Introduction to Functional Programming

Zsék Viktéria, Ph.D.

Department of Programming Languages and Compilers
Faculty of Informatics
E6tvds Lorand University
Budapest, Hungary
zsv@elte.hu

Overview

© Introduction
@ Why FP? - motivation
© Defining functions
@ Guards and patterns
@ Recursive functions
o Compositions
© Lists
@ List definitions
@ Operations with lists
@ Functions on lists
@ Higher order functions
o Filter, map, fold

© Sorting
@ Infinite lists

@ Primes

Introduction
@0000

Motivation

Functional programming:

allows programs to be written clearly, concisely
has a high level of abstraction

supports reusable software components
encourages the use of formal verification
enables rapid prototyping

has inherent parallel features

Introduction
(o] Jelele]

What is functional programming?

@ the closest programming style to mathematical writing,
thinking

@ which one should be the first programming language?
@ the basic element of the computation is the function

@ basically function compositions are applied

@ running a program is called evaluation

Introduction
[e]e] Tele]

Syntax

The syntax of a programming language is the set of rules applied to
describe a problem.

fa) =>1f a

flab) + cd=>f ab +c x d
f(g(b)) => £ (g b)

fla)g(b) =>f a *x g b

Introduction
[e]e]e] o]

History

@ Lisp - list processor, in early 60s John McCarthy

@ operates on lists, functions can be arguments to other
functions

@ type checking, ability to check programs before running them
o ML, Miranda, Haskell, Clean

@ lazy functional programming

Introduction
0000e

Writing functional programs is FUN

@ to motivate you to write functional programs
@ to get involved in working with FP
@ to have FUN by learning FP

The Clean compiler can be downloaded from:
http://clean.cs.ru.nl/Clean

unzip, start IDE, open examples.icl create a project file examples.prj
and run, only one active Start expression!!

module examples

import StdEnv // needed for standard functions
Start =42 // 42

http://clean.cs.ru.nl/Clean

Defining functions
@00000

Clean - Start

@ Some start expressions:

Start = 4x6+8
Start = sqrt 2.0
Start = sin x

Start = sum [1..10]

@ constants pi = 3.1415926

Defining functions
(o] lelele]e}

Program evaluation

@ reduction steps
o redex

@ normal form

fx=(x+38)*x
Start = £ 2

Start

— £ 2

— (2 +8) %2
— 10 * 2

— 20

Defining functions
[e]e] lele]e]

Reduction steps, redex

@ the process of evaluation is called reduction

@ replacing a part of expression which matches a function
definition is called reduction step

@ redex = reducible expression

@ when a function contains no redexes is called normal form

Defining functions
[e]e]e] le]e]

Lazy and eager evaluation

@ lazy = the expression is not evaluated until is not needed

@ opposite is eager evaluation = all arguments are evaluated
before the function’s result

@ Clean is pure, lazy functional language
e advantages of lazy evaluation: infinite lists, less evaluations

Defining functions
O000e0

Standard functions

@ StdEnv - contains all

@ the name of your own functions should start with letter then
zero or more letters, digits, symbols

@ upper and lower case allowed but treated differently

e funny symbols, built-in function names can not be used

Defining functions
O0000®

Some predefined operators / functions on numbers

e integers 18, 0, -23 and floating-point numbers 1.5, 0.0, 4.765,
1.2e3 1200.0

e addition +, subtraction -, multiplication *, division /

@ for Int some standard functions abs, gcd, sign

o for Real sqrt, sin, exp

e for Bool type True, False (George Boole eng.math. 1815-1864)

@ boolean operators
>, <=, == (equal), <> (not equal), && (and), || (or)
e comments // or /* ... */

Defining functions
L o]

Getting started

Simple examples of Clean functions:

incl :: Int — Int

incl x =x + 1

double :: Int — Int

double x = x + x

quadruple :: Int — Int
quadruple x = double (double x)
factorial :: Int — Int
factorial n = prod [1 .. n]

Using them:

Start = 3+10%2 // 23

Start = sqrt 3.0 //1.73...
Start = quadruple 2 // 8
Start = factorial 5 // 120

Defining functions
oe

Definitions by cases

The cases are guarded by Boolean expressions:

absl x

| x < 0=-x //tilde x

| otherwise = x

Start = absl -4 // two cases, the result is 4

abs2 x

| x < 0=-x //tilde x

= X

Start = abs2 4 // otherwise can be omitted, 4

// more then two guards or cases
signof :: Int — Int

signof x

| x>0=1
| x=0=0
| x <0=-1

Start = signof -8 //-1

Defining functions
o

Definitions by recursion

Examples of recursive functions:

factor :: Int — Int

factor n

I n=0=1

| n>0=n * factor (n - 1)
Start = factor 5 // 120

power :: Int Int — Int
power X n

I n=0=1

| n>0=x * power x (n - 1)
Start = power 2 5 // 32

Defining functions
[]

Compositions, function parameters

// function composition
twiceof :: (a — a) a — a
twiceof £ x = f (£ x)
Start = twiceof inc 0 // 2

// Evaluation:
twiceof inc 0
— inc (inc 0)
— inc (0+1)
— inc 1

— 1+1

— 2

Twice :: (t—t) — (t—t)
Twice £ =f o £
Start = Twice inc 2 // 4

f=gohoiojok is nicer than

Definition

data structures - store and manipulate collections of data
list - sequence of elements of the same type

elements of a list can be of any type

they are written between [] brackets

coma separates the elements

considered recursive data type

Lists in Clean

lists in Clean are regarded as linked lists - a chain of boxes
referring to each other

empty list is []

every list has a type, the type of the contained elements
no restrictions on the number of elements

singleton list with one element [False], [[1,2,3]]

special constructor is [1:[2,3,4]] is equivalent to [1,2,3,4]
[1,2,3] is equivalent to [1:[2:[3:[]]]]

Defining lists

One of the most important data structures in FP is the list: a
sequence of elements of the same type

11 :: [Int]

11 =[1, 2, 3, 4, 5]

12 :: [Bool]

12 = [True, False, True]

13 :: [Real—Real]
13 = [sin, cos, sin]

14 :: [[Int]]

14 =[[1, 2, 3], [8, 9]]
15 :: [a]

15 =]

16 :: [Int]

16 = [1..10]

17 :: [Int]

17 = [1..]

Generating lists

Start =
[1..10] // [1,2,3,4,5,6,7,8,9,10]
[1,2..10] //[1,2,34,56,7,8910]
[1,0.. -10] //[1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]
(1.. -10] //[]
(1..0] vl
(1..1] // 1]
[1,3..4] // [1,3]
[1..] // [1,2,3,4,5,6,7,8,9,10,...

[1,3..] //[1,3,5,7,9,11,13,15,...
[100,80..] // [100,80,60,40,20,0,-20,-40,...

@00

Operations with lists

Start =
hd [1, 2, 3, 4, 5] // 1
tl [1, 2, 3, 4, 5] // [2, 3, 4, 5]

drop 2 [1, 2, 3, 4, 5] //[3 4, 5]
take 2 [1, 2, 3, 4, 5] //[1,2]

[1, 2, 3] ++ [6, 7] // 11,236 7]
reverse [1, 2, 3] // 13 2 1]
length [1, 2, 3, 4] // 4

last [1, 2, 3] // 3

init [1, 2, 3] //[1, 2]

isMember 2 [1, 2, 3] // True
isMember 5 [1, 2, 3] // False
flatten [[1,2], [3, 4, 5], [6, 7]] J/[1, 2 3, 4,5 6, 7]

Lists
(o] le}

Definition of some operations

take :: Int [a] — [a]

take n [] =]

take n [x : xs]

[n<1=1]]

| otherwise = [x : take (n-1) xs]

drop :: Int [a] — [a]
arop n [] = []

drop n [x : xs]

| n<1=[x: xs]

| otherwise = drop (n-1) xs

Start = take 2 [] yall
Start =drop 5 [1,2,3] yali
Start = take 2 [1 .. 10] // [1,2]

Start = drop ([1..5]!''2) [1..5] //[4,5]

Lists
[efe]]

Definition of some operations

reverse :: [a] — [a]
reverse [] = []
reverse [x : xs| = reverse xs ++ [x]

Start = reverse [1,3..10] // [9.7,5,31]

Start = reverse [5,4 .. -5] // [-5,-4,-3,-2,-1,0,1,2,3,4,5]
Start = isMember 0 [] // False

Start = isMember -1 [1..10] // False

Start = isMember ([1..5]!!1) [1..5] // True

Lists
@®00000000

Definitions by patterns

Various patterns can be used:

// some list patterns

triplesum :: [Int] — Int

triplesum [x, y, z] =x +y + z

Start = triplesum [1,2,4] // 7 [1,2,3,4] error

head :: [Int] — Int
head [x : y] = x
Start = head [1..5] // 1

tail :: [Int] — [Int]
tail [x : y] =y
Start = tail [1..5] //[2,34,5]

// omitting values
f :: Int Int — Int
f X =X

Start=f 45 //5

Lists
0O@0000000

Definitions by patterns

// patterns with list constructor

g :: [Int] — Int
gx.y:z]= x+y

Start =g [1, 2, 3, 4, 5] //3

// patterns + recursively applied functions
lastof [x] = x

lastof [x : y] = lastof y

Start = lastof [1..10] // 10

Lists
0O0@000000

Definitions by recursion 2

// recursive functions on lists

suml x

| x =[] =0

| otherwise = hd x + suml (tl x)

sum2 [] =0
sum2 [first : rest] = first + sum2 rest
Start = suml [1..5] // 15 the same for sum2

// recursive function with any element pattern
lengthl [=0

lengthl [_ : rest]= 1 + lengthl rest
Start = lengthl [1..10] // 10

Lists
000e00000

Warm-up exercises

Evaluate the following expressions:

1.

2.

(take 3 [1..10]) ++ (drop 3 [1..10])
length (flatten [[1,2], [3], [4, 5. 6, 7]. [8, 9]])
isMember (length [1..5]) [7..10]

[1..5] ++ [0] ++ reverse [1..5]

0O000@0000

Solutions

A O =

(take 3 [1..10]) ++ (drop 3 [1..10])

. length (flatten [[1,2], [3], [4, 5, 6, 7], [8, 9]])

. isMember (length [1..5]) [7..10]

[1..5] ++ [0] ++ reverse [1..5]

[1, 2,3, 4,5, 6,7, 8,9, 10]
9

False
[1, 2,3, 4,5,0, 5, 4, 3, 2, 1]

0O0000e000

init, last, flatten

init selects everything but the last element (compare with last).

init :: [a] — [a]
init [x] = []
init [x : xs] = [x : init xs]

last :: [a] — a
last [x] =x
last [x : xs] = last xs

flatten :: [[a]] — [a]
flatten [] = []
flatten [x : xs] = x ++ flatten xs

Lists
000000800

Comparing and ordering lists

Equality of lists (operators are also functions written between the
arguments)

) :: [a] [a] — Bool | = a

0[] = True

[] [y : ys] = False

[x : xs] [] = False

[x : xs] [y : ys] =x =y && xs = ys

A~ NSNS~
~— — — —

Lists
000000080

Ordering lists

Lexicographical ordering (dictionary ordering)
E.g. [2, 3] < [3, 0] or [10, 1] < [10, 2]

(<) :: [a] [a] = Bool | <, = a

x :xs] [y :ys]=x<yll (x=y & xs < ys)

Lists
0O0000000e

Other comparisons

Once we have < and == all others can be defined.
(<>)xy=not(x==y)

(>)xy=y<x

(>=)xy=not (x <y)

(<=)xy =not (y < x)

Higher order functions
000000000000 00

Compositions, function parameters

// function parameters

filter :: (a — Bool) [a] — [a]
filter p [] =]

filter p [x : xs]

| px=[x : filter p xs]

| otherwise = filter p Xxs

Start = filter isEven [1..10] //[2,4,6,8,10]

odd x = not (isEven x)
Start = odd 23 // True

Start = filter (not o isEven) [1..100] //[1,3,5,..,99]

Higher order functions
0O@000000000000

Partial parameterization

Calling a function with fewer arguments than it expects.

plus x y = x +y
successor :: (Int — Int)
successor = plus 1

Start = successor 4 //5
succ = (+) 1

Start = succ 5 //6

// the function adding 5 to something
Start = map (plus 5) [1,2,3] //[6,7.8]

plus :: Int — (Int—Int)
accepts an Int and returns the successor function of type Int—Int

Currying: treats equivalently the following two types
Int Int — Int and Int — (Int — Int)

Higher order functions
0000000000000 0

Higher order functions

map :: (a—b) [a] — [b]
map £ [] = []
map f [x:xs] = [f x : map f xs]

Start = map inc [1, 2, 3] // 2, 3, 4]
Start = map double [1, 2, 3] // 2, 4, 6]

// lambda expressions
Start = map (Ax = x*x+2*x+1) [1..10] //[4,9,16,25,36,49,64,81,100,121]

// mapfun [f,g,h] x = [fx, g x, h X]
napfun [] x = [
mapfun [f : fs] x = [f x : mapfun fs X]

Start = mapfun [inc, inc, inc] 3 //[4, 4, 4]

Higher order functions
[ee]e] lelelelelelelelele]e)

Filtering

filter p [] =]

filter p [x : xs]

| p x=[x : filter p xs]

| otherwise = filter p xs

Start = filter isEven [2,4,6,7,8,9] //[2, 4, 6, 8]

takeWhile :: (a—Bool) [a] — [a]

takeWhile p [] = []

takeWhile p [x : xs]

| p x =[x : takeWhile p xs]

| otherwise = []

Start = takeWhile isEven [2,4,6,7,8,9] //[2 4, 6]

dropWhile p [] = []

dropWhile p [x : xs]

| p x = dropWhile p xs

| otherwise = [x : xs]

Start = dropWhile isEven [2,4,6,7,8,9] //[7, 8 9]

Higher order functions
[e]e]ele] lelelelelelelele]e)

Folding and writing equivalences

foldr ope [] = e
foldr op e [x : xs] = op x (foldr op e xs)

foldr (+) 0 [1,2,3,4,5] = (1+(2+(3+(4+(5+ 0)))))
Start = foldr (+) 10 [1, 2, 3] // 16

product [] =1
product [x:xs] = x * product xs

and [] = True
and [x:xs] = x && and xs

product = foldr (*) 1
and = foldr (&&) True
sum = foldr (+) O

Higher order functions
[e]e]ele]e] lelelelelelele]e)

[teration

// compute f until p holds

until p £ x

| p x=x

| otherwise = until p £ (f x)

Start = until ((<)10) ((+)2) 0 // 12

// iteration of a function

iterate :: (t — t) t — [t]

iterate £ x = [x : iterate f (f x)]
Start = iterate inc 1 //infinite list [1..]

Higher order functions

000000800000 00

(1,°£2) :: (Int,Char)

("world" ,True,2) :: (String,Bool,Int)

([1,2],sqrt) ([Int] ,Real—Real)

(1,(2,3)) :: (Int,(Int,Int))

// any number 2- tup/es pair, 3-tuples, no 1-tuple (8) is just integer

fst :: (a,b) —
fst (x,y) = x
Start = fst (10, "world") // 10

snd :: (a,b) = b
snd (x,y) =y

Start = snd (1,(2,3)) // (2,3)

f :: (Int, Char) — Int
f (n, x) =n + tolnt x
Start = £ (1,’a’) // 98

Higher order functions

0000000 @000000

splitAt :: Int [a] — ([a].[a])
splitAt n xs = (take n xs, drop n xs)

Start = splitAt 3 [’hello’] // (['h’ e, I'L[1 0])

search :: [(a,b)] a = b | = a
search [(x,y):ts] s
| x =8=y

| otherwise = search ts s

Start = search [(1,1), (2,4), (3.9)] 3 //9

Higher order functions
00000000 e00000

Zipping

zip :: [a] [b] — [(a,b)]

zip [] ys =[]

zip xs [] =[]

zip [x : xs] [y : ys] = [(x , y) : zip xs ys]

Start = zip [1,2,3] [*abc’] //[(1'2)).(2'b).(3,C)]

Higher order functions

000000000 e0000

List comprehensions

Start :: [Int]
Start = [x * x \\ x « [1..10]] // [1,4.9,16,25,36,49,64,81,100]

// expressions before double backslash

// generators after double backslash

// i.e. expressions of form x <- xs x ranges over values of xs
// for each value value the expression is computed

Start = map (M =x * x) [1..10] // [1,4,9,16,25,36,49,64,81,100]
// constraints after generators
Start :: [Int]

Start = [x * x \\ x « [1..10] | x rem 2 = 0] //[4,16,36,64,100]

Higher order functions
0000000000 e000

List comprehensions

// nested combination of generators

// coma combinator - generates every possible combination of the
// corresponding variables, last variable changes faster

// for each x value y traverses the given list

Start :: [(Int,Int)]
Start = [(x,y) \\ x «+ [1..2], vy < [4..6]]
// [(1,4).(1,5).(1,6).(2.4).(2.5).(2.6)]

// parallel combinator of generators is &

Start = [(x,y) \\ x « [1..2] &y « [4..6]]

/7 [(1.4).(2.5)]

// multiple generators with constraints

Start = [(x,y) \\ x «+ [1..5], y < [1..x] | isEven x]

/7 1(21).(22),(4.1).(4.2).(4.3).(44)]

Higher order functions
0000000000000

List comprehensions - equivalences

filterc :: (a—Bool) [a]
filterc p 1 = [x \\ x «

zipc :: [a] [b] — [(a,b)]
zipc as bs = [(a , b) \\ a « as & b « bs]

Start = zipc [1,2,3] [10, 20, 30] // [(1,10),(2,20),(3,30)]

// functions like sum, reverse, isMember, take
// are hard to write using list comprehensions

Higher order functions
000000000000 80

Warm-up exercises 2

Write a function or an expression for the following:

1. compute 5! factorial using foldr => 120

2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,
5], [6, 7]] => [1,2.3,4,5,6,7])

3. using map and foldr compute how many elements are
altogether in the following list [[1,2], [3, 4, 5], [6, 7]] => 7

4. using map extract only the first elements of the sublists in [[1,2],
[3, 4, 5], [6, 7]] => [1,3,6]

Higher order functions
0000000000000 e

Solutions 2

Write a function or an expression for the following:

1. compute 5! factorial using foldr => 120

2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,
5], [6, 7]] => [1.2.3,4,5,6,7])

3. using map and foldr compute how many elements are
altogether in the following list [[1,2], [3, 4, 5], [6, 7]] => 7

4. using map extract only the first elements of the sublists in [[1,2],
[3, 4, 5], [6, 7]] => [1,3,6]

Start = foldr (*) 1 [1..5]

Start = foldr (++) [] [[1.2], [3, 4, 5], [6, 7]]

. Start = foldr (+) O (map length [[1,2], [3, 4, 5], [6., 7]])
Start = map hd [[1,2], [3, 4, 5], [6, 7]]

AN =

Sorting
[leJele]

Sorting lists

Start = sort [3,1,4,2,0] //[0,1,2,34]

// inserting in already sorted list
Insert :: a [a] — [a] | Oxd a
Insert e [] = [e]

Insert e [x : xs]

| e<x=1[e, x: xs]

| otherwise = [x : Insert e xs]

Start = Insert 5 [2, 4 .. 10] // [2,4,5,6,8,10]

mysort :: [a] — [a] | Ord a
mysort [] =]

mysort [a:x] = Insert a (mysort x)
Start = mysort [3,1,4,2,0] //[0,1,2,34]

Insert 3 (Insert 1 (Insert 4 (Imsert 2 (Imsert 0 []))))

Sorting
[e] Tele]

Mergesort

merge :: [a] [a] — [a] | Ord a
merge [] ys = ys

merge xs [|] = xs

merge [x : xs] [y : ys]

| x <y=[x: merge xs [y : ys]]

| otherwise = [y : merge [x : xs] ys]

Start = merge [2,5,7] [1,5,6,8] //[1,2,5,56,7,8]
Start = merge [] [1.,2,3] //[1,23]

Start = merge [1,2,10] [] //[1.2,10]

Start = merge [2,1] [4,1] //[2141]

Start = merge [1,2] [1,4] //[1.1,24]

Sorting
[e]e] 6]

Mergesort 2

msort :: [a] — [a] | Ord a
msort Xxs
| len <1 = xs
| otherwise = merge (msort ys) (msort zs)
where
ys = take half xs
zs = drop half xs
half = len / 2
len = length xs

Start = msort [2,9,5,1,3,8] //[1,235,89]

Sorting
[e]e]e]]

Quick sort

gsort :: [b] — [b] | Ord b

gsort [] = []

gsort [a : xs] =gsort [x \\ x < xs | x < a] ++ [a] ++
gsort [x \\ x + xs | x >= a]

Start = gsort [2,1,5,3,6,9,0,1] //[0,1,1,2,35,6,9]

Infinite lists
[le]e}

Generating infinite list

// generating infinite list
Start = [2..] //[2345,.]
Start = [1,3..] //[1,35,7..]

fromn :: Int — [Int]
fromn n = [n : fromn (n+1)]

Start = fromn 8 // [8,9,10,...]

// intermediate result is infinite
Start =map ((~)3) [1..]

// final result is finite

Start = takeWhile ((>) 1000) (map ((")3) [1..])
// [3.9.27,81,243,729]

Infinite lists
(o] le}

Infinite lists - repeat

// generating infinite list with repeat from StdEnv
repeat :: a — [a]
repeat x = list where list = [x:list]

Start = repeat 5 // [5,5,5,...]

repeatn :: Int a — [a]
repeatn n x = take n (repeat x)

Start = repeatn 5 8 // [8,8,8,8,8]

Infinite lists
[ele]]

Infinite lists - iterate

// generating infinite list with iterate from StdEnv
iterate :: (a—a) a — [a]

iterate f x = [x: iterate f (f x)]

Start = iterate inc 5 // [5,6,7,8,9,...]

Start = iterate ((+) 1) 5 //[56,7,89,...]
Start = iterate ((*) 2) 1 //[1,24,816,..]

Start = iterate (A x= x/10) 54321 // [54321,5432,543,54,5,0,0...]

Primes
9000000

Prime numbers

divisible :: Int Int — Bool
divisible x n=xrem n = 0

denominators :: Int — [Int]
denominators x = filter (divisible x) [1..x]

prime :: Int — Bool
prime x = denominators x = [1,x]

primes :: Int — [Int]
primes x = filter prime [1l..x]

Start = primes 100 // [2,3,5,7,...,97]

Primes

0@00000

sieve :: [Int] — [Int]
sieve [p:xs] = [p: sieve [1 \\ 1 « xs | i rem p # 0]]

Start = take 100 (sieve [2..])

Some more examples

geq :: Real Real Real — (String,[Real])
geq a b ¢

| a =20.0 = ("not quadratic",[])

| delta < 0.0 = ("complex roots",[])

| delta = 0.0 = ("one root",[-b/(2.0%a)])

| delta > 0.0 = ("two roots", [(—b+radix)/(2.0%a),
(—b-radix)/(2.0%a)])

where
delta = bxb-4.0*axc
radix = sqrt delta
Start =qeq 1.0 2.0 1.0

Start = qeq 1.0 5.0 7.0

Primes
[e]e] lelele]e]

Primes
[e]e]e] Jelele]

Warm-up exercises 3

Write a function for the following:

1. fibonnacci n

2. count the occurrences of a number in a list

3. write a list comprehension for the doubles of a list

Primes
[e]e]ele] lele]

Solutions 3

fib :: Int — Int

fib 0 =1

fib1l=1

fib n = fib (n-1) + fib (n-2)
Start =fib 5 //8

fib2 :: Int — Int
fib2 n = fibAux n 1 1

fibAux 0 a b =a
fibAux i a b | 1 > 0 = fibAux (i-1) b (a+b)

Start = fib2 8

Primes
0000080

Solutions 3

CountOccurrences :: a [a] — Int | = a
CountOccurrences a [x : xs] =f a [x : xs] O
where
falli=i
fax:xs]i
| a =x=1f a xs i+l
=f axsi

Start = CountOccurrences 2 [2, 3, 4, 2, 2, 4, 2, 1] //4

Start = [2%x \\ x « [1..5]] //[2 4 6,8 10]

Primes
000000

Conclusions

The goal was:
@ to give an introduction to functional programming
@ to present important data structures in fp
o to get familiarized with basic and higher order functions

@ to practice by examples in order to acquire the programming
paradigm

	Introduction
	Why FP? - motivation

	Defining functions
	Guards and patterns
	Recursive functions
	Compositions

	Lists
	List definitions
	Operations with lists
	Functions on lists

	Higher order functions
	Filter, map, fold

	Sorting
	Infinite lists
	Primes

