Introduction to Functional Programming

Zsók Viktória, Ph.D.

Department of Programming Languages and Compilers Faculty of Informatics
Eötvös Loránd University
Budapest, Hungary
zsv@elte.hu

Overview

(1) Introduction

- Why FP? - motivation
(2) Defining functions
- Guards and patterns
- Recursive functions
- Compositions
(3) Lists
- List definitions
- Operations with lists
- Functions on lists

4 Higher order functions

- Filter, map, fold
(5) Sorting
(6) Infinite lists
(7) Primes

Motivation

Functional programming:

- allows programs to be written clearly, concisely
- has a high level of abstraction
- supports reusable software components
- encourages the use of formal verification
- enables rapid prototyping
- has inherent parallel features

What is functional programming?

- the closest programming style to mathematical writing, thinking
- which one should be the first programming language?
- the basic element of the computation is the function
- basically function compositions are applied
- running a program is called evaluation

Syntax

The syntax of a programming language is the set of rules applied to describe a problem.
$f(a)=>f a$
$f(a, b)+c d=>f a b+c * d$
$\mathrm{f}(\mathrm{g}(\mathrm{b}))=>\mathrm{f} \quad(\mathrm{g} \mathrm{b})$
$f(a) g(b)=>f a * g b$

History

- Lisp - list processor, in early 60s John McCarthy
- operates on lists, functions can be arguments to other functions
- type checking, ability to check programs before running them
- ML, Miranda, Haskell, Clean
- lazy functional programming

Writing functional programs is FUN

- to motivate you to write functional programs
- to get involved in working with FP
- to have FUN by learning FP

The Clean compiler can be downloaded from: http://clean.cs.ru.nl/Clean unzip, start IDE, open examples.icl create a project file examples.prj and run, only one active Start expression!!
module examples
import StdEnv // needed for standard functions
Start $=42 / / 42$

Clean - Start

- Some start expressions:

$$
\begin{aligned}
& \text { Start }=4 * 6+8 \\
& \text { Start }=\operatorname{sqrt} 2.0 \\
& \text { Start }=\sin x \\
& \text { Start }=\operatorname{sum}[1 . .10]
\end{aligned}
$$

- constants pi $=3.1415926$

Program evaluation

- reduction steps
- redex
- normal form

$$
f x=(x+8) * x
$$

$$
\text { Start }=\mathrm{f} 2
$$

Start
\rightarrow f 2
$\rightarrow(2+8) * 2$
$\rightarrow 10 * 2$
$\rightarrow 20$

Reduction steps, redex

- the process of evaluation is called reduction
- replacing a part of expression which matches a function definition is called reduction step
- redex $=$ reducible expression
- when a function contains no redexes is called normal form

Lazy and eager evaluation

- lazy $=$ the expression is not evaluated until is not needed
- opposite is eager evaluation $=$ all arguments are evaluated before the function's result
- Clean is pure, lazy functional language
- advantages of lazy evaluation: infinite lists, less evaluations

Standard functions

- StdEnv - contains all
- the name of your own functions should start with letter then zero or more letters, digits, symbols
- upper and lower case allowed but treated differently
- funny symbols, built-in function names can not be used

Some predefined operators / functions on numbers

- integers $18,0,-23$ and floating-point numbers $1.5,0.0,4.765$, 1.2 e 31200.0
- addition + , subtraction -, multiplication *, division /
- for Int some standard functions abs, gcd, sign
- for Real sqrt, sin, exp
- for Bool type True, False (George Boole eng.math. 1815-1864)
- boolean operators
$>,<=,==$ (equal), $<>$ (not equal), \&\& (and), \|। (or)
- comments // or /*... */

Getting started

Simple examples of Clean functions:

```
inc1 :: Int }->\mathrm{ Int
inc1 }x=x+
double :: Int }->\mathrm{ Int
```

double $x=x+x$
quadruple :: Int \rightarrow Int
quadruple $x=$ double (double \times)
factorial :: Int \rightarrow Int
factorial $\mathrm{n}=\operatorname{prod}[1 \quad . . \mathrm{n}]$

Using them:
Start $=3+10 * 2 / / 23$
Start $=$ sqrt $3.0 / / 1.73 \ldots$
Start = quadruple $2 / / 8$
Start $=$ factorial $5 / / 120$

Definitions by cases

The cases are guarded by Boolean expressions:

```
abs1 x
```

| $x<0=\neg x / /$ tilde x
\mid otherwise $=x$
Start $=$ abs1 $-4 \quad / /$ two cases, the result is 4
abs2 \times
| $x<0=\neg x / /$ tilde x
$=\mathrm{x}$
Start $=$ abs2 4 // otherwise can be omitted, 4
// more then two guards or cases
signof : : Int \rightarrow Int
signof x
| $x>0=1$
$\mid x=0=0$
| $\mathrm{x}<0=-1$
Start $=$ signof $-8 / /-1$

Definitions by recursion

Examples of recursive functions:

```
factor :: Int }->\mathrm{ Int
factor n
| n = 0=1
| n > 0 = n * factor (n - 1)
Start = factor 5 // 120
power :: Int Int }->\mathrm{ Int
power x n
| n = 0=1
| n > 0 = x * power x (n - 1)
Start = power 25 // 32
```


Compositions, function parameters

// function composition
twiceof : : $\mathrm{a} \rightarrow \mathrm{a}$) a $\rightarrow \mathrm{a}$
twiceof $\mathrm{f} x=\mathrm{f}(\mathrm{f} \times$)
Start = twiceof inc $0 / / 2$
// Evaluation:
twiceof inc 0
\rightarrow inc (inc 0)
\rightarrow inc ($0+1$)
\rightarrow inc 1
$\rightarrow 1+1$
$\rightarrow 2$

Twice : : $(\mathrm{t} \rightarrow \mathrm{t}) \rightarrow(\mathrm{t} \rightarrow \mathrm{t})$
Twice $f=\mathrm{f} \circ \mathrm{f}$
Start = Twice inc $2 / / 4$
$\mathrm{f}=\mathrm{g} \circ \mathrm{h} \circ \mathrm{i} \circ \mathrm{j} \circ \mathrm{k}$ is nicer than

Definition

- data structures - store and manipulate collections of data
- list - sequence of elements of the same type
- elements of a list can be of any type
- they are written between [] brackets
- coma separates the elements
- considered recursive data type

Lists in Clean

- lists in Clean are regarded as linked lists - a chain of boxes referring to each other
- empty list is []
- every list has a type, the type of the contained elements
- no restrictions on the number of elements
- singleton list with one element [False], [[1,2,3]]
- special constructor is $[1:[2,3,4]]$ is equivalent to $[1,2,3,4]$ $[1,2,3]$ is equivalent to $[1:[2:[3:[7]]]$

Defining lists

One of the most important data structures in FP is the list: a sequence of elements of the same type

```
11 :: [Int]
l1 = [1, 2, 3, 4, 5]
12 :: [Bool]
12 = [True, False, True]
13 :: [Real->Real]
13 = [sin, cos, sin]
14 :: [[Int]]
14 = [[1, 2, 3], [8, 9]]
15 :: [a]
15 = []
16 :: [Int]
16 = [1..10]
17 :: [Int]
17 = [1..]
```


Generating lists

$$
\begin{array}{ll}
\text { Start }= & \\
\begin{array}{cl}
{[1 . .10]} & / /[1,2,3,4,5,6,7,8,9,10] \\
{[1,2 \ldots 10]} & / /[1,2,3,4,5,6,7,8,9,10] \\
{[1,0 \ldots-10]} & / /[1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10] \\
{[1 .-10]} & / /[] \\
{[1 . .0]} & / /[] \\
{[1.1]} & / /[1] \\
{[1,3 \ldots 4]} & / /[1,3] \\
{[1 . .]} & / /[1,2,3,4,5,6,7,8,9,10, \ldots \\
{[1,3 \ldots]} & / /[1,3,5,7,9,11,13,15, \ldots \\
{[100,80 \ldots]} & / /[100,80,60,40,20,0,-20,-40, \ldots
\end{array}
\end{array}
$$

Operations with lists

```
Start =
    hd \([1,2,3,4,5] \quad / / 1\)
    tl \([1,2,3,4,5] \quad / /[2,3,4,5]\)
    drop \(2[1,2,3,4,5] \quad / /[3,4,5]\)
    take \(2[1,2,3,4,5] \quad / /[1,2]\)
    \([1,2,3]++[6,7] \quad / /[1,2,3,6,7]\)
    reverse \([1,2,3] \quad / /[3,2,1]\)
    length [1, 2, 3, 4] // 4
    last \([1,2,3] \quad / / 3\)
    init \([1,2,3] \quad / /[1,2]\)
    isMember \(2[1,2,3] \quad / / T r u e\)
    isMember \(5[1,2,3] \quad / /\) False
    flatten \([[1,2],[3,4,5],[6,7]] \quad / /[1,2,3,4,5,6,7]\)
```


Definition of some operations

```
take :: Int [a] -> [a]
take n [] = []
take n [x : xs]
| n < 1 = []
| otherwise = [x : take (n-1) xs]
drop :: Int [a] -> [a]
drop n [] = []
drop n [x : xs]
| n< 1 = [x : xs]
| otherwise = drop (n-1) xs
```

```
Start = take 2 []
Start = drop 5 [1,2,3]
// II
Start = take 2 [1 .. 10] // [1,2]
Start = drop ([1..5]!!2) [1..5] // [4,5]
```


Definition of some operations

```
reverse :: [a] -> [a]
reverse [] = []
reverse [x : xs] = reverse xs ++ [x]
Start = reverse [1,3..10] // [9,7,5,3,1]
Start = reverse [5,4 .. -5] // [-5,-4,-3,-2,-1,0,1,2,3,4,5]
Start = isMember 0 [] // False
Start = isMember -1 [1..10] // False
Start = isMember ([1..5]!!1) [1..5] // True
```


Definitions by patterns

Various patterns can be used:
// some list patterns
triplesum :: [Int] \rightarrow Int
triplesum [x, y, z] $=x+y+z$
Start $=$ triplesum [1, 2,4] // 7 [1,2,3,4] error
head :: [Int] \rightarrow Int
head $[x: y]=x$
Start = head [1..5] // 1
tail :: [Int] \rightarrow [Int]
tail [$\mathrm{x}: \mathrm{y}$] $=\mathrm{y}$
Start $=$ tail [1..5] // [2,3,4,5]
// omitting values
$\mathrm{f}::$ Int Int \rightarrow Int
f $\quad \mathrm{x}=\mathrm{x}$
Start $=\mathrm{f} 45 / / 5$

Definitions by patterns

// patterns with list constructor
$\mathrm{g}::$ [Int] \rightarrow Int
$\mathrm{g}[\mathrm{x}, \mathrm{y}: \mathrm{z}]=\mathrm{x}+\mathrm{y}$
Start $=\mathrm{g}[1,2,3,4,5] / / 3$
// patterns + recursively applied functions
lastof $[\mathrm{x}]=\mathrm{x}$
lastof [x : y] = lastof y
Start = lastof [1..10] // 10

Definitions by recursion 2

// recursive functions on lists
sum1 \times
| $\mathrm{x}=[]=0$
| otherwise $=$ hd $x+\operatorname{sum} 1($ tl x)

```
sum2 [] \(=0\)
sum2 [first : rest] = first + sum2 rest
Start = sum1 [1..5] // 15 the same for sum2
```

// recursive function with any element pattern
length1 [] = 0
length1 [_ : rest] $=1+$ length1 rest
Start = length1 [1..10] // 10

Warm-up exercises

Evaluate the following expressions:

1. (take 3 [1..10]) ++ (drop 3 [1..10])
2. length (flatten [[1,2], [3], [4, 5, 6, 7], [8, 9]])
3. isMember (length [1..5]) [7..10]
4. [1..5] ++ [0] ++ reverse [1..5]

Solutions

1. (take 3 [1..10]) ++ (drop 3 [1..10])
2. length (flatten [[1, 2], [3], [4, 5, 6, 7], [8, 9]])
3. isMember (length [1..5]) [7..10]
4. [1..5] ++ [0] ++ reverse [1..5]
5. $[1,2,3,4,5,6,7,8,9,10]$
6. 9
7. False
8. $[1,2,3,4,5,0,5,4,3,2,1]$

init, last, flatten

init selects everything but the last element (compare with last).
init :: [a] \rightarrow [a]
init [x] = []
init [x : xs] = [x : init xs]
last : : [a] \rightarrow a
last [x$]=\mathrm{x}$
last [x : xs] = last xs
flatten :: [[a]] \rightarrow [a]
flatten [] = []
flatten [x : xs] $=\mathrm{x}++$ flatten $\times s$

Comparing and ordering lists

Equality of lists (operators are also functions written between the arguments)
$(=)::[a][a] \rightarrow$ Bool | $=a$
(三) [] [] = True
$(=)$ [] [y : ys] = False
$(=)$ [$x: x s$] [] = False
$(=)[x: x s][y: y s]=x=y \& \& x s=y s$

Ordering lists

Lexicographical ordering (dictionary ordering)
E.g. $[2,3]<[3,0]$ or $[10,1]<[10,2]$
(<) :: [a] [a] \rightarrow Bool $\mid<,=a$
(<) [] [] = False
(<) [] _ = True
(<) _ [] = False
(<) $[x: x s][y: y s]=x<y \|(x=y \& \& x s<y s)$

Other comparisons

Once we have $<$ and $==$ all others can be defined.
$(<>) \times y=\operatorname{not}(x==y)$
$(>) x y=y<x$
$(>=) \times y=\operatorname{not}(x<y)$
$(<=) \times y=\operatorname{not}(y<x)$

Compositions, function parameters

// function parameters
filter :: (a Bool) [a] \rightarrow [a]
filter p [] = []
filter p [$\mathrm{x}: \mathrm{xs}$]
| $\mathrm{p} \times=$ [x : filter $\mathrm{p} \times \mathrm{s}$]
\mid otherwise $=$ filter $p \times s$
Start $=$ filter isEven [1..10] // [2,4,6,8,10]
odd $x=$ not (isEven \times)
Start = odd 23 // True
Start $=$ filter (not o isEven) [1..100] // [1,3,5,..,99]

Partial parameterization

Calling a function with fewer arguments than it expects.
plus $\mathrm{x} y=\mathrm{x}+\mathrm{y}$
successor :: (Int \rightarrow Int)
successor $=$ plus 1
Start = successor $4 / / 5$
succ $=(+) 1$
Start $=\operatorname{succ} 5 / / 6$
// the function adding 5 to something
Start $=\operatorname{map}($ plus 5) $[1,2,3] / /[6,7,8]$
plus :: Int \rightarrow (Int \rightarrow Int)
accepts an Int and returns the successor function of type Int \rightarrow Int

Currying: treats equivalently the following two types
Int Int \rightarrow Int and Int \rightarrow (Int \rightarrow Int)

Higher order functions

```
map :: \((\mathrm{a} \rightarrow \mathrm{b})\) [a] \(\rightarrow[\mathrm{b}]\)
map \(f\) [] = []
map \(f[x: x s]=[f \times: \operatorname{map} f x s]\)
Start \(=\) map inc \([1,2,3] \quad / /[2,3,4]\)
Start \(=\) map double \([1,2,3] \quad / /[2,4,6]\)
```

// lambda expressions
Start $=\operatorname{map}(\lambda x=x * x+2 * x+1) \quad[1 . .10] / /[4,9,16,25,36,49,64,81,100,121]$
$/ /$ mapfun $[f, g, h] \times=[f x, g x, h x]$
mapfun [] $x=$ []
mapfun [$\mathrm{f}: \mathrm{fs}$] $\mathrm{x}=[\mathrm{f} \times$: mapfun $\mathrm{fs} \times$]
Start = mapfun [inc, inc, inc] $3 / /[4,4,4]$

Filtering

```
filter p [] = []
filter p [x : xs]
| p x = [ < : filter p xs]
| otherwise = filter p xs
Start = filter isEven [2,4,6,7,8,9] // [2, 4, 6, 8]
takeWhile :: (a->Bool) [a] -> [a]
takeWhile p [] = []
takeWhile p [x : xs]
| p x = [x : takeWhile p xs]
| otherwise = []
Start = takeWhile isEven [2,4,6,7,8,9] // [2, 4, 6]
dropWhile p [] = []
dropWhile p [x : xs]
| p x = dropWhile p xs
| otherwise = [x : xs]
Start = dropWhile isEven [2,4,6,7,8,9] // [7, 8, 9]
```


Folding and writing equivalences

```
foldr op e [] = e
foldr op e [x : xs] \(=\) op \(\times\) (foldr op e xs)
foldr \((+) 0[1,2,3,4,5] \rightarrow(1+(2+(3+(4+(5+0)))))\)
Start \(=\) foldr (+) \(10[1,2,3] \quad / / 16\)
product [] = 1
product [x:xs] \(=x *\) product \(\times s\)
and [] = True
and \([\mathrm{x}: \mathrm{xs}]=x \& \&\) and \(x s\)
```

product $=$ foldr (*) 1
and $=$ foldr (\&\&) True
sum $=$ foldr (+) 0

Iteration

// compute f until p holds
until pfx
| $\mathrm{p} x=\mathrm{x}$
| otherwise $=$ until pf(fx)
Start = until ((<)10) ((+)2) $0 / / 12$
// iteration of a function
iterate : : ($\mathrm{t} \rightarrow \mathrm{t}) \mathrm{t} \rightarrow$ [t$]$
iterate $\mathrm{f} x=[\mathrm{x}$: iterate $\mathrm{f}(\mathrm{f} \times$)]
Start = iterate inc 1 // infinite list [1..]

Tuples

,	r)
("world",True,2)	:: (String, Bool,Int)
([1,2],sqrt)	$:([$ Int $]$ Real \rightarrow Real
$(1,(2,3))$	(Int, (Int, Int))

// any number 2-tuples pair, 3-tuples, no 1-tuple (8) is just integer

```
fst : : \((\mathrm{a}, \mathrm{b}) \rightarrow \mathrm{a}\)
fst \((x, y)=x\)
Start = fst (10, "world") // 10
snd :: \((a, b) \rightarrow b\)
snd \((x, y)=y\)
Start \(=\) snd \((1,(2,3)) \quad / /(2,3)\)
```

f : : (Int, Char) \rightarrow Int
$\mathrm{f}(\mathrm{n}, \mathrm{x})=\mathrm{n}+$ toInt x
Start $=\mathrm{f}\left(1,{ }^{\prime} \mathrm{a}^{\prime}\right) / / 98$

Tuples

```
splitAt :: Int [a] \(\rightarrow\) ([a],[a])
splitAt \(\mathrm{n} \times \mathrm{s}=(\) take \(\mathrm{n} \times \mathrm{s}\), drop \(\mathrm{n} \times \mathrm{s}\) )
Start \(=\) splitAt 3 ['hello'] // (['h', 'e','l'],['l','o'])
search :: [(a,b)] a \(\rightarrow\) b | \(=a\)
search [(x,y):ts] s
\(\mid x=s=y\)
| otherwise = search ts s
Start \(=\) search \([(1,1),(2,4),(3,9)] 3 / / 9\)
```


Zipping

$$
\begin{aligned}
& \text { zip :: [a] [b] } \rightarrow \text { [(a,b)] } \\
& \text { zip [] ys = [] } \\
& \text { zip xs [] = [] } \\
& \text { zip [x : xs] [y : ys] }=[(x, y) \text { : zip xs ys] } \\
& \text { Start = zip }[1,2,3][\text { 'abc'] // [(1,'a'),(2, 'b'),(3, 'c')] }
\end{aligned}
$$

List comprehensions

$$
\begin{aligned}
& \text { Start }::[\text { Int }] \\
& \text { Start }=[\times * \times \backslash \times \leftarrow[1 . .10]] / /[1,4,9,16,25,36,49,64,81,100]
\end{aligned}
$$

// expressions before double backslash
// generators after double backslash
// i.e. expressions of form $x<-$ xs x ranges over values of xs
// for each value value the expression is computed
Start $=\operatorname{map}(\lambda x=x * x)[1 . .10] / /[1,4,9,16,25,36,49,64,81,100]$
// constraints after generators
Start : : [Int]
Start $=[x * \times \backslash \backslash \leftarrow[1 . .10] \mid \times$ rem $2=0] \quad / /[4,16,36,64,100]$

List comprehensions

// nested combination of generators
// coma combinator - generates every possible combination of the // corresponding variables, last variable changes faster // for each x value y traverses the given list

```
Start :: [(Int,Int)]
Start = [(x,y) \\ x \leftarrow [1..2], y \leftarrow [4..6]]
    // [(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)]
```

// parallel combinator of generators is \&

$$
\text { Start }=\underset{/ /(\underset{/(1,4),(2,5)]}{[(x, y)} \backslash \underset{\sim}{\leftarrow}[1.2] \& y \leftarrow[4 \ldots 6]]}{ }
$$

// multiple generators with constraints

$$
\begin{aligned}
\text { Start }= & {[(x, y) \backslash \backslash x \leftarrow[1 \ldots 5], y \leftarrow[1 \ldots x] \mid \text { isEven } x] } \\
& / /[(2,1),(2,2),(4,1),(4,2),(4,3),(4,4)]
\end{aligned}
$$

List comprehensions - equivalences

```
mapc:: (a->b) [a] -> [b]
mapc f l=[f x \\ x <l]
filterc:: (a->Bool) [a] -> [a]
filterc p l = [ < \\ x \leftarrowl|p x ]
zipc:: [a] [b] -> [(a,b)]
zipc as bs =[(a,b) \\ a \leftarrow as & b \leftarrow bs]
Start = zipc [1,2,3][10, 20, 30] // [(1,10),(2,20),(3,30)]
// functions like sum, reverse, isMember, take
// are hard to write using list comprehensions
```


Warm-up exercises 2

Write a function or an expression for the following:

1. compute 5 ! factorial using foldr $=>120$
2. rewrite flatten using foldr (for the following list $[[1,2],[3,4$, 5], $[6,7]]=>$ [1,2,3,4,5,6,7])
3. using map and foldr compute how many elements are altogether in the following list $[[1,2],[3,4,5],[6,7]]=>7$
4. using map extract only the first elements of the sublists in $[[1,2]$,
$[3,4,5],[6,7]]=>[1,3,6]$

Solutions 2

Write a function or an expression for the following:

1. compute 5 ! factorial using foldr $=>120$
2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,

5], $[6,7]]=>[1,2,3,4,5,6,7])$
3. using map and foldr compute how many elements are altogether in the following list $[[1,2],[3,4,5],[6,7]]=>7$
4. using map extract only the first elements of the sublists in [[1,2],
$[3,4,5],[6,7]]=>[1,3,6]$

1. Start $=$ foldr $(*) 1$ [1..5]
2. Start $=$ foldr $(++$) [] [[1,2], [3, 4, 5], [6, 7]]
3. Start $=$ foldr $(+) 0$ (map length $[[1,2],[3,4,5],[6,7]])$

4 Start = map hd [[1,2], [3, 4, 5], [6, 7]]

Sorting lists

```
Start \(=\operatorname{sort}[3,1,4,2,0] / /[0,1,2,3,4]\)
```

// inserting in already sorted list
Insert :: a [a] \rightarrow [a] | Ord a
Insert e [] = [e]
Insert e [x : xs]
$\mid e \leq x=[e, x: x s]$
| otherwise $=$ [x : Insert e xs]
Start $=$ Insert 5 [2, 4 .. 10] // [2,4,5,6,8,10]
mysort :: [a] \rightarrow [a] | Ord a
mysort [] = []
mysort [a:x] = Insert a (mysort x)
Start $=$ mysort $[3,1,4,2,0] / /[0,1,2,3,4]$
Insert 3 (Insert 1 (Insert 4 (Insert 2 (Insert 0 []))))

Mergesort

$$
\begin{aligned}
& \text { merge }::[a][a] \rightarrow[a] \mid \text { Ord a } \\
& \text { merge }[] \text { ys }=y s \\
& \text { merge } x s[]=x s \\
& \text { merge }[x: x s][y: y s] \\
& \mid x \leq y=[x: \text { merge } x s[y: y s]] \\
& \mid \text { otherwise }=[y: \operatorname{merge}[x: x s] \text { ys }] \\
& \text { Start }=\text { merge }[2,5,7][1,5,6,8] / /[1,2,5,5,6,7,8] \\
& \text { Start }=\text { merge }[][1,2,3] / /[1,2,3] \\
& \text { Start }=\text { merge }[1,2,10][] / /[1,2,10] \\
& \text { Start }=\text { merge }[2,1][4,1] / /[2,1,4,1] \\
& \text { Start }=\text { merge }[1,2][1,4] / /[1,1,2,4]
\end{aligned}
$$

Mergesort 2

msort :: [a] \rightarrow [a] | Ord a
msort xs
| len $\leq 1=x$ s
| otherwise = merge (msort ys) (msort zs)
where

$$
\begin{aligned}
& \text { ys }=\text { take half } \times s \\
& \text { zs }=\text { drop half } \times s
\end{aligned}
$$

$$
\text { half }=\text { len } / 2
$$

$$
\text { len }=\text { length } \times s
$$

Start $=$ msort $[2,9,5,1,3,8] / /[1,2,3,5,8,9]$

Quick sort

qsort :: [b] \rightarrow [b] | Ord b
qsort [] = []
qsort [a: xs] $=$ qsort $[\mathrm{x} \backslash \mathrm{X} \leftarrow \mathrm{xs} \mid \mathrm{x}<\mathrm{a}$] ++ [a] ++ qsort $[x \ \backslash x \leftarrow \times s \mid \times \geqslant=a]$

Start $=$ qsort $[2,1,5,3,6,9,0,1] / /[0,1,1,2,3,5,6,9]$

Generating infinite list

// generating infinite list
Start $=$ [2..] // [2,3,4,5,..]
Start $=[1,3 ..] / /[1,3,5,7, \ldots]$
fromn :: Int \rightarrow [Int]
fromn $\mathrm{n}=[\mathrm{n}$: fromn ($\mathrm{n}+1$)]
Start $=$ fromn $8 / /[8,9,10, \ldots]$
// intermediate result is infinite
Start $=$ map (($) 3$) [1..]
// final result is finite
Start = takeWhile ((>) 1000) (map (() 3) [1..])
// [3,9,27,81,243,729]

Infinite lists - repeat

// generating infinite list with repeat from StdEnv repeat :: a \rightarrow [a] repeat $x=$ list where list $=[\mathrm{x}:$ list $]$

Start $=$ repeat $5 / /[5,5,5, \ldots]$
repeatn :: Int a \rightarrow [a]
repeatn $\mathrm{n} \times=$ take n (repeat x)
Start $=$ repeatn 58 // [8,8,8,8,8]

Infinite lists - iterate

// generating infinite list with iterate from StdEnv
iterate : : $(a \rightarrow a) a \rightarrow[a]$
iterate $\mathrm{f} x=[\mathrm{x}$: iterate $\mathrm{f}(\mathrm{f} \times$)]
Start $=$ iterate inc $5 / /[5,6,7,8,9, \ldots]$
Start = iterate ((+) 1) 5 // [5,6,7,8,9,...]
Start $=$ iterate $((*) 2) 1 / /[1,2,4,8,16, \ldots]$
Start $=$ iterate $(\lambda x=x / 10) 54321 / /[54321,5432,543,54,5,0,0 \ldots]$

Prime numbers

```
divisible :: Int Int }->\mathrm{ Bool
divisible x n = x rem n = 0
denominators :: Int }->\mathrm{ [Int]
denominators }x=\mathrm{ filter (divisible x) [1..x]
prime :: Int }->\mathrm{ Bool
prime }x=\mathrm{ denominators }x=[1,x
primes :: Int }->\mathrm{ [Int]
primes }x=\mathrm{ filter prime [1..x]
Start = primes 100 // [2,3,5,7,\ldots,97]
```


Sieve

```
sieve :: [Int] -> [Int]
sieve [p:xs] = [p: sieve [ i \\ i \leftarrow xs | i rem p f 0]]
Start = take 100 (sieve [2..])
```


Some more examples

```
qeq :: Real Real Real }->\mathrm{ (String,[Real])
qeq a b c
    | a = 0.0 = ("not quadratic",[])
    | delta < 0.0 = ("complex roots",[])
    | delta = 0.0 = ("one root",[\negb/(2.0*a)])
    | delta > 0.0 = ("two roots", [(\negb+radix)/(2.0*a),
                                    (\negb-radix)/(2.0*a)])
    where
        delta = b*b-4.0*a*c
        radix = sqrt delta
Start = qeq 1.0 2.0 1.0
Start = qeq 1.0 5.0 7.0
```


Warm-up exercises 3

Write a function for the following:

1. fibonnacci n
2. count the occurrences of a number in a list
3. write a list comprehension for the doubles of a list

Solutions 3

```
fib :: Int }->\mathrm{ Int
fib 0 = 1
fib 1 = 1
fib n= fib (n-1) + fib (n-2)
Start = fib 5 // 8
fib2 :: Int }->\mathrm{ Int
fib2 n = fibAux n 1 1
fibAux 0 a b = a
fibAux i a b | i > 0 = fibAux (i-1) b (a+b)
Start = fib2 8
```


Solutions 3

CountOccurrences :: a [a] \rightarrow Int | $=$ a CountOccurrences a $[\mathrm{x}: \mathrm{xs}]=\mathrm{f}$ a $[\mathrm{x}: \mathrm{xs}] 0$
where

$$
\begin{aligned}
& \text { f a [] i = i } \\
& \text { f a [x: xs] i } \\
& \text { | } a=x=\mathrm{f} \text { a } \mathrm{xs} \mathrm{i}+1 \\
& =\mathrm{f} \text { a } \mathrm{xs} \mathrm{i}
\end{aligned}
$$

Start $=$ CountOccurrences $2[2,3,4,2,2,4,2,1] / / 4$
Start $=[2 * x \backslash \backslash \leftarrow[1 . .5]] / /[2,4,6,8,10]$

Conclusions

The goal was:

- to give an introduction to functional programming
- to present important data structures in fp
- to get familiarized with basic and higher order functions
- to practice by examples in order to acquire the programming paradigm

