
Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Introduction to Functional Programming

Zsók Viktória, Ph.D.

Department of Programming Languages and Compilers
Faculty of Informatics

Eötvös Loránd University
Budapest, Hungary

zsv@elte.hu

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Overview

1 Introduction
Why FP? - motivation

2 Defining functions
Guards and patterns
Recursive functions
Compositions

3 Lists
List definitions
Operations with lists
Functions on lists

4 Higher order functions
Filter, map, fold

5 Sorting
6 Infinite lists
7 Primes

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Motivation

Functional programming:
allows programs to be written clearly, concisely
has a high level of abstraction
supports reusable software components
encourages the use of formal verification
enables rapid prototyping
has inherent parallel features

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

What is functional programming?

the closest programming style to mathematical writing,
thinking
which one should be the first programming language?

the basic element of the computation is the function
basically function compositions are applied
running a program is called evaluation

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Syntax

The syntax of a programming language is the set of rules applied to
describe a problem.

f(a) => f a
f(a,b) + cd => f a b + c * d
f(g(b)) => f (g b)
f(a)g(b) => f a * g b

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

History

Lisp - list processor, in early 60s John McCarthy
operates on lists, functions can be arguments to other
functions
type checking, ability to check programs before running them
ML, Miranda, Haskell, Clean
lazy functional programming

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Writing functional programs is FUN

to motivate you to write functional programs
to get involved in working with FP
to have FUN by learning FP

The Clean compiler can be downloaded from:
http://clean.cs.ru.nl/Clean
unzip, start IDE, open examples.icl create a project file examples.prj
and run, only one active Start expression!!

module examples
import StdEnv // needed for standard functions
Start = 42 // 42

http://clean.cs.ru.nl/Clean

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Clean - Start

Some start expressions:

Start = 4*6+8

Start = sqrt 2.0

Start = sin x

Start = sum [1..10]

constants pi = 3.1415926

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Program evaluation

reduction steps
redex
normal form

f x = (x + 8) * x

Start = f 2

Start
→ f 2
→ (2 + 8) * 2
→ 10 * 2
→ 20

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Reduction steps, redex

the process of evaluation is called reduction
replacing a part of expression which matches a function
definition is called reduction step
redex = reducible expression
when a function contains no redexes is called normal form

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Lazy and eager evaluation

lazy = the expression is not evaluated until is not needed
opposite is eager evaluation = all arguments are evaluated
before the function’s result
Clean is pure, lazy functional language
advantages of lazy evaluation: infinite lists, less evaluations

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Standard functions

StdEnv - contains all
the name of your own functions should start with letter then
zero or more letters, digits, symbols
upper and lower case allowed but treated differently
funny symbols, built-in function names can not be used

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Some predefined operators / functions on numbers

integers 18, 0, -23 and floating-point numbers 1.5, 0.0, 4.765,
1.2e3 1200.0
addition +, subtraction -, multiplication *, division /
for Int some standard functions abs, gcd, sign
for Real sqrt, sin, exp
for Bool type True, False (George Boole eng.math. 1815-1864)
boolean operators
>, <=, == (equal), <> (not equal), && (and), || (or)
comments // or /* ... */

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Getting started

Simple examples of Clean functions:

inc1 :: Int → Int
inc1 x = x + 1
double :: Int → Int
double x = x + x
quadruple :: Int → Int
quadruple x = double (double x)
factorial :: Int → Int
factorial n = prod [1 .. n]

Using them:

Start = 3+10*2 // 23
Start = sqrt 3.0 // 1.73...
Start = quadruple 2 // 8
Start = factorial 5 // 120

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definitions by cases

The cases are guarded by Boolean expressions:
abs1 x
| x < 0 = ¬x // tilde x
| otherwise = x
Start = abs1 -4 // two cases, the result is 4

abs2 x
| x < 0 = ¬x // tilde x
= x
Start = abs2 4 // otherwise can be omitted, 4

// more then two guards or cases
signof :: Int → Int
signof x
| x > 0 = 1
| x == 0 = 0
| x < 0 = -1
Start = signof -8 // -1

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definitions by recursion

Examples of recursive functions:

factor :: Int → Int
factor n
| n == 0 = 1
| n > 0 = n * factor (n - 1)
Start = factor 5 // 120

power :: Int Int → Int
power x n
| n == 0 = 1
| n > 0 = x * power x (n - 1)
Start = power 2 5 // 32

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Compositions, function parameters

// function composition
twiceof :: (a → a) a → a
twiceof f x = f (f x)
Start = twiceof inc 0 // 2

// Evaluation:
twiceof inc 0
→ inc (inc 0)
→ inc (0+1)
→ inc 1
→ 1+1
→ 2

Twice :: (t→t) → (t→t)
Twice f = f o f
Start = Twice inc 2 // 4

f = g o h o i o j o k is nicer than f x = g(h(i(j(k x))))

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definition

data structures - store and manipulate collections of data
list - sequence of elements of the same type
elements of a list can be of any type
they are written between [] brackets
coma separates the elements
considered recursive data type

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Lists in Clean

lists in Clean are regarded as linked lists - a chain of boxes
referring to each other
empty list is []
every list has a type, the type of the contained elements
no restrictions on the number of elements
singleton list with one element [False], [[1,2,3]]
special constructor is [1:[2,3,4]] is equivalent to [1,2,3,4]
[1,2,3] is equivalent to [1:[2:[3:[]]]]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Defining lists

One of the most important data structures in FP is the list: a
sequence of elements of the same type

l1 :: [Int]
l1 = [1 , 2 , 3 , 4 , 5]
l2 :: [Bool]
l2 = [True, False, True]
l3 :: [Real→Real]
l3 = [sin, cos, sin]
l4 :: [[Int]]
l4 = [[1 , 2 , 3] , [8 , 9]]
l5 :: [a]
l5 = []
l6 :: [Int]
l6 = [1..10]
l7 :: [Int]
l7 = [1..]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Generating lists

Start =
[1..10] // [1,2,3,4,5,6,7,8,9,10]
[1 ,2..10] // [1,2,3,4,5,6,7,8,9,10]
[1 ,0.. -10] // [1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]
[1.. -10] // []
[1..0] // []
[1..1] // [1]
[1 ,3..4] // [1,3]
[1..] // [1,2,3,4,5,6,7,8,9,10,...
[1 ,3..] // [1,3,5,7,9,11,13,15,...
[100,80..] // [100,80,60,40,20,0,-20,-40,...

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Operations with lists

Start =
hd [1 , 2 , 3 , 4 , 5] // 1
tl [1 , 2 , 3 , 4 , 5] // [2, 3, 4, 5]
drop 2 [1 , 2 , 3 , 4 , 5] // [3, 4, 5]
take 2 [1 , 2 , 3 , 4 , 5] // [1 , 2]
[1 , 2 , 3] ++ [6 , 7] // [1, 2, 3, 6, 7]
reverse [1 , 2 , 3] // [3, 2, 1]
length [1 , 2 , 3 , 4] // 4
last [1 , 2 , 3] // 3
init [1 , 2 , 3] // [1, 2]
isMember 2 [1 , 2 , 3] // True
isMember 5 [1 , 2 , 3] // False
flatten [[1 ,2] , [3 , 4 , 5] , [6 , 7]] // [1, 2, 3, 4, 5, 6, 7]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definition of some operations

take :: Int [a] → [a]
take n [] = []
take n [x : xs]
| n < 1 = []
| otherwise = [x : take (n-1) xs]

drop :: Int [a] → [a]
drop n [] = []
drop n [x : xs]
| n < 1 = [x : xs]
| otherwise = drop (n-1) xs

Start = take 2 [] // []
Start = drop 5 [1 ,2 ,3] // []
Start = take 2 [1 .. 10] // [1,2]
Start = drop ([1..5]!!2) [1..5] // [4,5]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definition of some operations

reverse :: [a] → [a]
reverse [] = []
reverse [x : xs] = reverse xs ++ [x]

Start = reverse [1 ,3..10] // [9,7,5,3,1]
Start = reverse [5 ,4 .. -5] // [-5,-4,-3,-2,-1,0,1,2,3,4,5]
Start = isMember 0 [] // False
Start = isMember -1 [1..10] // False
Start = isMember ([1..5]!!1) [1..5] // True

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definitions by patterns

Various patterns can be used:
// some list patterns
triplesum :: [Int] → Int
triplesum [x , y , z] = x + y + z
Start = triplesum [1 ,2 ,4] // 7 [1,2,3,4] error

head :: [Int] → Int
head [x : y] = x
Start = head [1..5] // 1

tail :: [Int] → [Int]
tail [x : y] = y
Start = tail [1..5] // [2,3,4,5]

// omitting values
f :: Int Int → Int
f _ x = x
Start = f 4 5 // 5

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definitions by patterns

// patterns with list constructor
g :: [Int] → Int
g [x , y : z] = x + y
Start = g [1 , 2 , 3 , 4 , 5] // 3

// patterns + recursively applied functions
lastof [x] = x
lastof [x : y] = lastof y
Start = lastof [1..10] // 10

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Definitions by recursion 2

// recursive functions on lists
sum1 x
| x == [] = 0
| otherwise = hd x + sum1 (tl x)

sum2 [] = 0
sum2 [first : rest] = first + sum2 rest
Start = sum1 [1..5] // 15 the same for sum2

// recursive function with any element pattern
length1 [] = 0
length1 [_ : rest]= 1 + length1 rest
Start = length1 [1..10] // 10

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Warm-up exercises

Evaluate the following expressions:

1. (take 3 [1..10]) ++ (drop 3 [1..10])

2. length (flatten [[1 ,2] , [3] , [4 , 5 , 6 , 7] , [8 , 9]])

3. isMember (length [1..5]) [7..10]

4. [1..5] ++ [0] ++ reverse [1..5]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Solutions

1. (take 3 [1..10]) ++ (drop 3 [1..10])

2. length (flatten [[1 ,2] , [3] , [4 , 5 , 6 , 7] , [8 , 9]])

3. isMember (length [1..5]) [7..10]

4. [1..5] ++ [0] ++ reverse [1..5]

1. [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
2. 9
3. False
4. [1 , 2 , 3 , 4 , 5 , 0 , 5 , 4 , 3 , 2 , 1]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

init, last, flatten

init selects everything but the last element (compare with last).

init :: [a] → [a]
init [x] = []
init [x : xs] = [x : init xs]

last :: [a] → a
last [x] = x
last [x : xs] = last xs

flatten :: [[a]] → [a]
flatten [] = []
flatten [x : xs] = x ++ flatten xs

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Comparing and ordering lists

Equality of lists (operators are also functions written between the
arguments)

(==) :: [a] [a] → Bool | == a
(==) [] [] = True
(==) [] [y : ys] = False
(==) [x : xs] [] = False
(==) [x : xs] [y : ys] = x == y && xs == ys

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Ordering lists

Lexicographical ordering (dictionary ordering)
E.g. [2, 3] < [3, 0] or [10, 1] < [10, 2]

(<) :: [a] [a] → Bool | < , == a
(<) [] [] = False
(<) [] _ = True
(<) _ [] = False
(<) [x : xs] [y : ys] = x < y || (x == y && xs < ys)

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Other comparisons

Once we have < and == all others can be defined.
(<>) x y = not (x == y)
(>) x y = y < x
(>=) x y = not (x < y)
(<=) x y = not (y < x)

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Compositions, function parameters

// function parameters
filter :: (a → Bool) [a] → [a]
filter p [] = []
filter p [x : xs]
| p x = [x : filter p xs]
| otherwise = filter p xs

Start = filter isEven [1..10] // [2,4,6,8,10]

odd x = not (isEven x)
Start = odd 23 // True

Start = filter (not o isEven) [1..100] // [1,3,5,..,99]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Partial parameterization

Calling a function with fewer arguments than it expects.

plus x y = x + y
successor :: (Int → Int)
successor = plus 1
Start = successor 4 // 5
succ = (+) 1
Start = succ 5 // 6

// the function adding 5 to something
Start = map (plus 5) [1 ,2 ,3] // [6,7,8]

plus :: Int → (Int→Int)
accepts an Int and returns the successor function of type Int→Int

Currying: treats equivalently the following two types
Int Int → Int and Int → (Int → Int)

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Higher order functions

map :: (a→b) [a] → [b]
map f [] = []
map f [x:xs] = [f x : map f xs]

Start = map inc [1 , 2 , 3] // [2, 3, 4]
Start = map double [1 , 2 , 3] // [2, 4, 6]

// lambda expressions
Start = map (λx = x*x+2*x+1) [1..10] // [4,9,16,25,36,49,64,81,100,121]

// mapfun [f,g,h] x = [f x, g x, h x]
mapfun [] x = []
mapfun [f : fs] x = [f x : mapfun fs x]

Start = mapfun [inc, inc, inc] 3 // [4, 4, 4]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Filtering

filter p [] = []
filter p [x : xs]
| p x = [x : filter p xs]
| otherwise = filter p xs
Start = filter isEven [2 ,4 ,6 ,7 ,8 ,9] // [2, 4, 6, 8]

takeWhile :: (a→Bool) [a] → [a]
takeWhile p [] = []
takeWhile p [x : xs]
| p x = [x : takeWhile p xs]
| otherwise = []
Start = takeWhile isEven [2 ,4 ,6 ,7 ,8 ,9] // [2, 4, 6]

dropWhile p [] = []
dropWhile p [x : xs]
| p x = dropWhile p xs
| otherwise = [x : xs]
Start = dropWhile isEven [2 ,4 ,6 ,7 ,8 ,9] // [7, 8, 9]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Folding and writing equivalences

foldr op e [] = e
foldr op e [x : xs] = op x (foldr op e xs)

foldr (+) 0 [1 ,2 ,3 ,4 ,5] → (1 + (2 + (3 + (4 + (5 + 0)))))

Start = foldr (+) 10 [1 , 2 , 3] // 16

product [] = 1
product [x:xs] = x * product xs

and [] = True
and [x:xs] = x && and xs

product = foldr (*) 1
and = foldr (&&) True
sum = foldr (+) 0

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Iteration

// compute f until p holds
until p f x
| p x = x
| otherwise = until p f (f x)
Start = until ((<)10) ((+)2) 0 // 12

// iteration of a function
iterate :: (t → t) t → [t]
iterate f x = [x : iterate f (f x)]
Start = iterate inc 1 // infinite list [1..]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Tuples

(1 ,’f’) :: (Int,Char)
("world" ,True,2) :: (String,Bool,Int)
([1 ,2] ,sqrt) :: ([Int] ,Real→Real)
(1 ,(2 ,3)) :: (Int, (Int,Int))
// any number 2-tuples pair, 3-tuples, no 1-tuple (8) is just integer

fst :: (a ,b) → a
fst (x , y) = x
Start = fst (10, "world") // 10

snd :: (a ,b) → b
snd (x , y) = y
Start = snd (1 ,(2 ,3)) // (2,3)

f :: (Int, Char) → Int
f (n, x) = n + toInt x
Start = f (1 ,’a’) // 98

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Tuples

splitAt :: Int [a] → ([a] , [a])
splitAt n xs = (take n xs , drop n xs)

Start = splitAt 3 [’hello’] // ([’h’,’e’,’l’],[’l’,’o’])

search :: [(a ,b)] a → b | == a
search [(x , y):ts] s
| x == s = y
| otherwise = search ts s

Start = search [(1 ,1) , (2 ,4) , (3 ,9)] 3 // 9

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Zipping

zip :: [a] [b] → [(a ,b)]
zip [] ys = []
zip xs [] = []
zip [x : xs] [y : ys] = [(x , y) : zip xs ys]

Start = zip [1 ,2 ,3] [’abc’] // [(1,’a’),(2,’b’),(3,’c’)]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

List comprehensions

Start :: [Int]
Start = [x * x \\ x ← [1..10]] // [1,4,9,16,25,36,49,64,81,100]

// expressions before double backslash
// generators after double backslash
// i.e. expressions of form x <- xs x ranges over values of xs
// for each value value the expression is computed

Start = map (λx = x * x) [1..10] // [1,4,9,16,25,36,49,64,81,100]

// constraints after generators

Start :: [Int]
Start = [x * x \\ x ← [1..10] | x rem 2 == 0] // [4,16,36,64,100]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

List comprehensions

// nested combination of generators
// coma combinator - generates every possible combination of the
// corresponding variables, last variable changes faster
// for each x value y traverses the given list

Start :: [(Int,Int)]
Start = [(x , y) \\ x ← [1..2] , y ← [4..6]]

// [(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)]

// parallel combinator of generators is &

Start = [(x , y) \\ x ← [1..2] & y ← [4..6]]
// [(1,4),(2,5)]

// multiple generators with constraints

Start = [(x , y) \\ x ← [1..5] , y ← [1..x] | isEven x]
// [(2,1),(2,2),(4,1),(4,2),(4,3),(4,4)]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

List comprehensions - equivalences

mapc :: (a→b) [a] → [b]
mapc f l = [f x \\ x ← l]

filterc :: (a→Bool) [a] → [a]
filterc p l = [x \\ x ← l | p x]

zipc :: [a] [b] → [(a ,b)]
zipc as bs = [(a , b) \\ a ← as & b ← bs]

Start = zipc [1 ,2 ,3] [10 , 20, 30] // [(1,10),(2,20),(3,30)]

// functions like sum, reverse, isMember, take
// are hard to write using list comprehensions

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Warm-up exercises 2

Write a function or an expression for the following:
1. compute 5! factorial using foldr => 120
2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,
5], [6, 7]] => [1,2,3,4,5,6,7])
3. using map and foldr compute how many elements are
altogether in the following list [[1,2], [3, 4, 5], [6, 7]] => 7
4. using map extract only the first elements of the sublists in [[1,2],
[3, 4, 5], [6, 7]] => [1,3,6]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Solutions 2

Write a function or an expression for the following:
1. compute 5! factorial using foldr => 120
2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,
5], [6, 7]] => [1,2,3,4,5,6,7])
3. using map and foldr compute how many elements are
altogether in the following list [[1,2], [3, 4, 5], [6, 7]] => 7
4. using map extract only the first elements of the sublists in [[1,2],
[3, 4, 5], [6, 7]] => [1,3,6]

1. Start = foldr (*) 1 [1..5]
2. Start = foldr (++) [] [[1 ,2] , [3 , 4 , 5] , [6 , 7]]
3. Start = foldr (+) 0 (map length [[1 ,2] , [3 , 4 , 5] , [6 , 7]])
4 Start = map hd [[1 ,2] , [3 , 4 , 5] , [6 , 7]]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Sorting lists

Start = sort [3 ,1 ,4 ,2 ,0] // [0,1,2,3,4]

// inserting in already sorted list
Insert :: a [a] → [a] | Ord a
Insert e [] = [e]
Insert e [x : xs]
| e ≤ x = [e , x : xs]
| otherwise = [x : Insert e xs]
Start = Insert 5 [2 , 4 .. 10] // [2,4,5,6,8,10]

mysort :: [a] → [a] | Ord a
mysort [] = []
mysort [a:x] = Insert a (mysort x)
Start = mysort [3 ,1 ,4 ,2 ,0] // [0,1,2,3,4]

Insert 3 (Insert 1 (Insert 4 (Insert 2 (Insert 0 []))))

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Mergesort

merge :: [a] [a] → [a] | Ord a
merge [] ys = ys
merge xs [] = xs
merge [x : xs] [y : ys]
| x ≤ y = [x : merge xs [y : ys]]
| otherwise = [y : merge [x : xs] ys]

Start = merge [2 ,5 ,7] [1 ,5 ,6 ,8] // [1,2,5,5,6,7,8]
Start = merge [] [1 ,2 ,3] // [1,2,3]
Start = merge [1 ,2 ,10] [] // [1,2,10]
Start = merge [2 ,1] [4 ,1] // [2,1,4,1]
Start = merge [1 ,2] [1 ,4] // [1,1,2,4]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Mergesort 2

msort :: [a] → [a] | Ord a
msort xs
| len ≤ 1 = xs
| otherwise = merge (msort ys) (msort zs)
where

ys = take half xs
zs = drop half xs
half = len / 2
len = length xs

Start = msort [2 ,9 ,5 ,1 ,3 ,8] // [1,2,3,5,8,9]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Quick sort

qsort :: [b] → [b] | Ord b
qsort [] = []
qsort [a : xs] = qsort [x \\ x ← xs | x < a] ++ [a] ++

qsort [x \\ x ← xs | x >= a]

Start = qsort [2 ,1 ,5 ,3 ,6 ,9 ,0 ,1] // [0,1,1,2,3,5,6,9]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Generating infinite list

// generating infinite list
Start = [2..] // [2,3,4,5,...]
Start = [1 ,3..] // [1,3,5,7,...]

fromn :: Int → [Int]
fromn n = [n : fromn (n+1)]

Start = fromn 8 // [8,9,10,...]

// intermediate result is infinite
Start = map ((^)3) [1..]

// final result is finite
Start = takeWhile ((>) 1000) (map ((^)3) [1..])
// [3,9,27,81,243,729]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Infinite lists - repeat

// generating infinite list with repeat from StdEnv
repeat :: a → [a]
repeat x = list where list = [x:list]

Start = repeat 5 // [5,5,5,...]

repeatn :: Int a → [a]
repeatn n x = take n (repeat x)

Start = repeatn 5 8 // [8,8,8,8,8]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Infinite lists - iterate

// generating infinite list with iterate from StdEnv
iterate :: (a→a) a → [a]
iterate f x = [x: iterate f (f x)]

Start = iterate inc 5 // [5,6,7,8,9,...]

Start = iterate ((+) 1) 5 // [5,6,7,8,9,...]

Start = iterate ((*) 2) 1 // [1,2,4,8,16,...]

Start = iterate (λ x= x/10) 54321 // [54321,5432,543,54,5,0,0...]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Prime numbers

divisible :: Int Int → Bool
divisible x n = x rem n == 0

denominators :: Int → [Int]
denominators x = filter (divisible x) [1..x]

prime :: Int → Bool
prime x = denominators x == [1 ,x]

primes :: Int → [Int]
primes x = filter prime [1..x]

Start = primes 100 // [2,3,5,7,...,97]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Sieve

sieve :: [Int] → [Int]
sieve [p:xs] = [p: sieve [i \\ i ← xs | i rem p ̸= 0]]

Start = take 100 (sieve [2..])

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Some more examples

qeq :: Real Real Real → (String , [Real])
qeq a b c
| a == 0.0 = ("not quadratic" , [])
| delta < 0.0 = ("complex roots" , [])
| delta == 0.0 = ("one root" , [¬b/(2.0*a)])
| delta > 0.0 = ("two roots" , [(¬b+radix)/(2.0*a) ,

(¬b-radix)/(2.0*a)])
where

delta = b*b-4.0*a*c
radix = sqrt delta

Start = qeq 1.0 2.0 1.0

Start = qeq 1.0 5.0 7.0

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Warm-up exercises 3

Write a function for the following:
1. fibonnacci n
2. count the occurrences of a number in a list
3. write a list comprehension for the doubles of a list

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Solutions 3

fib :: Int → Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
Start = fib 5 // 8

fib2 :: Int → Int
fib2 n = fibAux n 1 1

fibAux 0 a b = a
fibAux i a b | i > 0 = fibAux (i-1) b (a+b)

Start = fib2 8

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Solutions 3

CountOccurrences :: a [a] → Int | == a
CountOccurrences a [x : xs] = f a [x : xs] 0
where

f a [] i = i
f a [x : xs] i
| a == x = f a xs i+1

= f a xs i

Start = CountOccurrences 2 [2 , 3 , 4 , 2 , 2 , 4 , 2 , 1] // 4

Start = [2*x \\ x ← [1..5]] // [2, 4, 6, 8, 10]

Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Conclusions

The goal was:
to give an introduction to functional programming
to present important data structures in fp
to get familiarized with basic and higher order functions
to practice by examples in order to acquire the programming
paradigm

	Introduction
	Why FP? - motivation

	Defining functions
	Guards and patterns
	Recursive functions
	Compositions

	Lists
	List definitions
	Operations with lists
	Functions on lists

	Higher order functions
	Filter, map, fold

	Sorting
	Infinite lists
	Primes

