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Motivation

Functional programming:
allows programs to be written clearly, concisely
has a high level of abstraction
supports reusable software components
encourages the use of formal verification
enables rapid prototyping
has inherent parallel features



Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

What is functional programming?

the closest programming style to mathematical writing,
thinking
which one should be the first programming language?

the basic element of the computation is the function
basically function compositions are applied
running a program is called evaluation
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Syntax

The syntax of a programming language is the set of rules applied to
describe a problem.

f(a) => f a
f(a,b) + cd => f a b + c * d
f(g(b)) => f (g b)
f(a)g(b) => f a * g b
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History

Lisp - list processor, in early 60s John McCarthy
operates on lists, functions can be arguments to other
functions
type checking, ability to check programs before running them
ML, Miranda, Haskell, Clean
lazy functional programming
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Writing functional programs is FUN

to motivate you to write functional programs
to get involved in working with FP
to have FUN by learning FP

The Clean compiler can be downloaded from:
http://clean.cs.ru.nl/Clean
unzip, start IDE, open examples.icl create a project file examples.prj
and run, only one active Start expression!!

module examples
import StdEnv // needed for standard functions
Start = 42 // 42

http://clean.cs.ru.nl/Clean
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Clean - Start

Some start expressions:

Start = 4*6+8

Start = sqrt 2.0

Start = sin x

Start = sum [1..10]

constants pi = 3.1415926
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Program evaluation

reduction steps
redex
normal form

f x = (x + 8) * x

Start = f 2

Start
→ f 2
→ (2 + 8) * 2
→ 10 * 2
→ 20
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Reduction steps, redex

the process of evaluation is called reduction
replacing a part of expression which matches a function
definition is called reduction step
redex = reducible expression
when a function contains no redexes is called normal form
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Lazy and eager evaluation

lazy = the expression is not evaluated until is not needed
opposite is eager evaluation = all arguments are evaluated
before the function’s result
Clean is pure, lazy functional language
advantages of lazy evaluation: infinite lists, less evaluations



Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Standard functions

StdEnv - contains all
the name of your own functions should start with letter then
zero or more letters, digits, symbols
upper and lower case allowed but treated differently
funny symbols, built-in function names can not be used
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Some predefined operators / functions on numbers

integers 18, 0, -23 and floating-point numbers 1.5, 0.0, 4.765,
1.2e3 1200.0
addition +, subtraction -, multiplication *, division /
for Int some standard functions abs, gcd, sign
for Real sqrt, sin, exp
for Bool type True, False (George Boole eng.math. 1815-1864)
boolean operators
>, <=, == (equal), <> (not equal), && (and), || (or)
comments // or /* ... */
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Getting started

Simple examples of Clean functions:

inc1 :: Int → Int
inc1 x = x + 1
double :: Int → Int
double x = x + x
quadruple :: Int → Int
quadruple x = double (double x)
factorial :: Int → Int
factorial n = prod [1 .. n]

Using them:

Start = 3+10*2 // 23
Start = sqrt 3.0 // 1.73...
Start = quadruple 2 // 8
Start = factorial 5 // 120
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Definitions by cases

The cases are guarded by Boolean expressions:
abs1 x
| x < 0 = ¬x // tilde x
| otherwise = x
Start = abs1 -4 // two cases, the result is 4

abs2 x
| x < 0 = ¬x // tilde x
= x
Start = abs2 4 // otherwise can be omitted, 4

// more then two guards or cases
signof :: Int → Int
signof x
| x > 0 = 1
| x == 0 = 0
| x < 0 = -1
Start = signof -8 // -1
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Definitions by recursion

Examples of recursive functions:

factor :: Int → Int
factor n
| n == 0 = 1
| n > 0 = n * factor (n - 1)
Start = factor 5 // 120

power :: Int Int → Int
power x n
| n == 0 = 1
| n > 0 = x * power x (n - 1)
Start = power 2 5 // 32
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Compositions, function parameters

// function composition
twiceof :: (a → a) a → a
twiceof f x = f (f x)
Start = twiceof inc 0 // 2

// Evaluation:
twiceof inc 0
→ inc (inc 0)
→ inc (0+1)
→ inc 1
→ 1+1
→ 2

Twice :: ( t→t ) → ( t→t )
Twice f = f o f
Start = Twice inc 2 // 4

f = g o h o i o j o k is nicer than f x = g(h(i(j(k x))))
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Definition

data structures - store and manipulate collections of data
list - sequence of elements of the same type
elements of a list can be of any type
they are written between [ ] brackets
coma separates the elements
considered recursive data type
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Lists in Clean

lists in Clean are regarded as linked lists - a chain of boxes
referring to each other
empty list is []
every list has a type, the type of the contained elements
no restrictions on the number of elements
singleton list with one element [False], [[1,2,3]]
special constructor is [1:[2,3,4]] is equivalent to [1,2,3,4]
[1,2,3] is equivalent to [1:[2:[3:[]]]]
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Defining lists

One of the most important data structures in FP is the list: a
sequence of elements of the same type

l1 :: [Int ]
l1 = [1 , 2 , 3 , 4 , 5]
l2 :: [Bool]
l2 = [True, False, True]
l3 :: [Real→Real]
l3 = [sin, cos, sin ]
l4 :: [ [Int ] ]
l4 = [ [1 , 2 , 3] , [8 , 9] ]
l5 :: [a ]
l5 = [ ]
l6 :: [Int ]
l6 = [1..10]
l7 :: [Int ]
l7 = [1.. ]
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Generating lists

Start =
[1..10] // [1,2,3,4,5,6,7,8,9,10]
[1 ,2..10] // [1,2,3,4,5,6,7,8,9,10]
[1 ,0.. -10 ] // [1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]
[1.. -10 ] // []
[1..0 ] // []
[1..1 ] // [1]
[1 ,3..4 ] // [1,3]
[1.. ] // [1,2,3,4,5,6,7,8,9,10,...
[1 ,3.. ] // [1,3,5,7,9,11,13,15,...
[100,80.. ] // [100,80,60,40,20,0,-20,-40,...
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Operations with lists

Start =
hd [1 , 2 , 3 , 4 , 5] // 1
tl [1 , 2 , 3 , 4 , 5] // [2, 3, 4, 5]
drop 2 [1 , 2 , 3 , 4 , 5] // [3, 4, 5]
take 2 [1 , 2 , 3 , 4 , 5] // [1 , 2]
[1 , 2 , 3] ++ [6 , 7] // [1, 2, 3, 6, 7]
reverse [1 , 2 , 3] // [3, 2, 1]
length [1 , 2 , 3 , 4] // 4
last [1 , 2 , 3] // 3
init [1 , 2 , 3] // [1, 2]
isMember 2 [1 , 2 , 3] // True
isMember 5 [1 , 2 , 3] // False
flatten [ [1 ,2 ] , [3 , 4 , 5] , [6 , 7] ] // [1, 2, 3, 4, 5, 6, 7]
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Definition of some operations

take :: Int [a ] → [a ]
take n [ ] = [ ]
take n [x : xs ]
| n < 1 = [ ]
| otherwise = [ x : take (n-1) xs ]

drop :: Int [a ] → [a ]
drop n [ ] = [ ]
drop n [x : xs ]
| n < 1 = [ x : xs ]
| otherwise = drop (n-1) xs

Start = take 2 [ ] // []
Start = drop 5 [1 ,2 ,3] // []
Start = take 2 [1 .. 10] // [1,2]
Start = drop ([1..5 ]!!2) [1..5] // [4,5]
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Definition of some operations

reverse :: [a ] → [a ]
reverse [ ] = [ ]
reverse [ x : xs ] = reverse xs ++ [ x ]

Start = reverse [1 ,3..10] // [9,7,5,3,1]
Start = reverse [5 ,4 .. -5 ] // [-5,-4,-3,-2,-1,0,1,2,3,4,5]
Start = isMember 0 [ ] // False
Start = isMember -1 [1..10] // False
Start = isMember ([1..5 ]!!1) [1..5 ] // True
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Definitions by patterns

Various patterns can be used:
// some list patterns
triplesum :: [Int ] → Int
triplesum [ x , y , z ] = x + y + z
Start = triplesum [1 ,2 ,4] // 7 [1,2,3,4] error

head :: [Int ] → Int
head [ x : y ] = x
Start = head [1..5 ] // 1

tail :: [Int ] → [Int ]
tail [ x : y ] = y
Start = tail [1..5 ] // [2,3,4,5]

// omitting values
f :: Int Int → Int
f _ x = x
Start = f 4 5 // 5
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Definitions by patterns

// patterns with list constructor
g :: [Int ] → Int
g [ x , y : z ] = x + y
Start = g [1 , 2 , 3 , 4 , 5] // 3

// patterns + recursively applied functions
lastof [ x ] = x
lastof [ x : y ] = lastof y
Start = lastof [1..10] // 10
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Definitions by recursion 2

// recursive functions on lists
sum1 x
| x == [ ] = 0
| otherwise = hd x + sum1 (tl x)

sum2 [ ] = 0
sum2 [first : rest] = first + sum2 rest
Start = sum1 [1..5 ] // 15 the same for sum2

// recursive function with any element pattern
length1 [ ] = 0
length1 [_ : rest]= 1 + length1 rest
Start = length1 [1..10] // 10
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Warm-up exercises

Evaluate the following expressions:

1. (take 3 [1..10 ] ) ++ (drop 3 [1..10 ] )

2. length (flatten [ [1 ,2 ] , [3 ] , [4 , 5 , 6 , 7] , [8 , 9 ] ] )

3. isMember (length [1..5 ] ) [7..10]

4. [1..5 ] ++ [0 ] ++ reverse [1..5 ]
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Solutions

1. (take 3 [1..10 ] ) ++ (drop 3 [1..10 ] )

2. length (flatten [ [1 ,2 ] , [3 ] , [4 , 5 , 6 , 7] , [8 , 9 ] ] )

3. isMember (length [1..5 ] ) [7..10]

4. [1..5 ] ++ [0 ] ++ reverse [1..5 ]

1. [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
2. 9
3. False
4. [1 , 2 , 3 , 4 , 5 , 0 , 5 , 4 , 3 , 2 , 1]
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init, last, flatten

init selects everything but the last element (compare with last).

init :: [a ] → [a ]
init [ x ] = [ ]
init [ x : xs ] = [ x : init xs ]

last :: [a ] → a
last [ x ] = x
last [ x : xs ] = last xs

flatten :: [ [ a ] ] → [a ]
flatten [ ] = [ ]
flatten [ x : xs ] = x ++ flatten xs
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Comparing and ordering lists

Equality of lists (operators are also functions written between the
arguments)

(==) :: [a ] [a ] → Bool | == a
(==) [ ] [ ] = True
(==) [ ] [ y : ys ] = False
(==) [ x : xs ] [ ] = False
(==) [ x : xs ] [ y : ys ] = x == y && xs == ys
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Ordering lists

Lexicographical ordering (dictionary ordering)
E.g. [2, 3] < [3, 0] or [10, 1] < [10, 2]

(<) :: [a ] [a ] → Bool | < , == a
(<) [ ] [ ] = False
(<) [ ] _ = True
(<) _ [ ] = False
(<) [ x : xs ] [ y : ys ] = x < y || ( x == y && xs < ys)
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Other comparisons

Once we have < and == all others can be defined.
(<>) x y = not ( x == y )
(>) x y = y < x
(>=) x y = not (x < y)
(<=) x y = not (y < x)
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Compositions, function parameters

// function parameters
filter :: ( a → Bool) [a ] → [a ]
filter p [ ] = [ ]
filter p [ x : xs ]
| p x = [ x : filter p xs ]
| otherwise = filter p xs

Start = filter isEven [1..10] // [2,4,6,8,10]

odd x = not (isEven x)
Start = odd 23 // True

Start = filter (not o isEven) [1..100] // [1,3,5,..,99]
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Partial parameterization

Calling a function with fewer arguments than it expects.

plus x y = x + y
successor :: (Int → Int)
successor = plus 1
Start = successor 4 // 5
succ = (+) 1
Start = succ 5 // 6

// the function adding 5 to something
Start = map (plus 5) [1 ,2 ,3] // [6,7,8]

plus :: Int → (Int→Int)
accepts an Int and returns the successor function of type Int→Int

Currying: treats equivalently the following two types
Int Int → Int and Int → (Int → Int)
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Higher order functions

map :: (a→b) [a ] → [b]
map f [ ] = [ ]
map f [x:xs] = [f x : map f xs ]

Start = map inc [1 , 2 , 3] // [2, 3, 4]
Start = map double [1 , 2 , 3] // [2, 4, 6]

// lambda expressions
Start = map (λx = x*x+2*x+1) [1..10] // [4,9,16,25,36,49,64,81,100,121]

// mapfun [f,g,h] x = [f x, g x, h x]
mapfun [ ] x = [ ]
mapfun [f : fs ] x = [f x : mapfun fs x ]

Start = mapfun [inc, inc, inc ] 3 // [4, 4, 4]
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Filtering

filter p [ ] = [ ]
filter p [ x : xs ]
| p x = [ x : filter p xs ]
| otherwise = filter p xs
Start = filter isEven [2 ,4 ,6 ,7 ,8 ,9] // [2, 4, 6, 8]

takeWhile :: (a→Bool) [a ] → [a ]
takeWhile p [ ] = [ ]
takeWhile p [ x : xs ]
| p x = [ x : takeWhile p xs ]
| otherwise = [ ]
Start = takeWhile isEven [2 ,4 ,6 ,7 ,8 ,9] // [2, 4, 6]

dropWhile p [ ] = [ ]
dropWhile p [ x : xs ]
| p x = dropWhile p xs
| otherwise = [ x : xs ]
Start = dropWhile isEven [2 ,4 ,6 ,7 ,8 ,9] // [7, 8, 9]
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Folding and writing equivalences

foldr op e [ ] = e
foldr op e [ x : xs ] = op x (foldr op e xs)

foldr (+) 0 [1 ,2 ,3 ,4 ,5] → ( 1 + ( 2 + ( 3 + ( 4 + ( 5 + 0 )))))

Start = foldr (+) 10 [1 , 2 , 3] // 16

product [ ] = 1
product [x:xs] = x * product xs

and [ ] = True
and [x:xs] = x && and xs

product = foldr (*) 1
and = foldr (&&) True
sum = foldr (+) 0
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Iteration

// compute f until p holds
until p f x
| p x = x
| otherwise = until p f (f x)
Start = until ((<)10) ((+)2) 0 // 12

// iteration of a function
iterate :: ( t → t ) t → [ t ]
iterate f x = [ x : iterate f (f x)]
Start = iterate inc 1 // infinite list [1..]
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Tuples

(1 ,’f’) :: (Int,Char)
("world" ,True,2) :: (String,Bool,Int)
([1 ,2] ,sqrt) :: ( [Int ] ,Real→Real)
(1 ,(2 ,3)) :: (Int, (Int,Int))
// any number 2-tuples pair, 3-tuples, no 1-tuple (8) is just integer

fst :: (a ,b) → a
fst (x , y) = x
Start = fst (10, "world") // 10

snd :: (a ,b) → b
snd (x , y) = y
Start = snd (1 ,(2 ,3)) // (2,3)

f :: (Int, Char) → Int
f (n, x) = n + toInt x
Start = f (1 ,’a’) // 98
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Tuples

splitAt :: Int [a ] → ( [a ] , [ a ])
splitAt n xs = (take n xs , drop n xs)

Start = splitAt 3 [’hello’ ] // ([’h’,’e’,’l’],[’l’,’o’])

search :: [ (a ,b) ] a → b | == a
search [ ( x , y):ts ] s
| x == s = y
| otherwise = search ts s

Start = search [(1 ,1) , (2 ,4) , (3 ,9)] 3 // 9
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Zipping

zip :: [a ] [b] → [ (a ,b) ]
zip [ ] ys = [ ]
zip xs [ ] = [ ]
zip [ x : xs ] [ y : ys ] = [ ( x , y) : zip xs ys ]

Start = zip [1 ,2 ,3] [’abc’ ] // [(1,’a’),(2,’b’),(3,’c’)]
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List comprehensions

Start :: [Int ]
Start = [ x * x \\ x ← [1..10 ] ] // [1,4,9,16,25,36,49,64,81,100]

// expressions before double backslash
// generators after double backslash
// i.e. expressions of form x <- xs x ranges over values of xs
// for each value value the expression is computed

Start = map (λx = x * x) [1..10] // [1,4,9,16,25,36,49,64,81,100]

// constraints after generators

Start :: [Int ]
Start = [ x * x \\ x ← [1..10] | x rem 2 == 0] // [4,16,36,64,100]
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List comprehensions

// nested combination of generators
// coma combinator - generates every possible combination of the
// corresponding variables, last variable changes faster
// for each x value y traverses the given list

Start :: [ (Int,Int) ]
Start = [ ( x , y) \\ x ← [1..2 ] , y ← [4..6 ] ]

// [(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)]

// parallel combinator of generators is &

Start = [ ( x , y) \\ x ← [1..2 ] & y ← [4..6 ] ]
// [(1,4),(2,5)]

// multiple generators with constraints

Start = [ ( x , y) \\ x ← [1..5 ] , y ← [1..x ] | isEven x ]
// [(2,1),(2,2),(4,1),(4,2),(4,3),(4,4)]



Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

List comprehensions - equivalences

mapc :: (a→b) [a ] → [b]
mapc f l = [ f x \\ x ← l ]

filterc :: (a→Bool) [a ] → [a ]
filterc p l = [ x \\ x ← l | p x ]

zipc :: [a ] [b] → [ (a ,b) ]
zipc as bs = [ (a , b) \\ a ← as & b ← bs ]

Start = zipc [1 ,2 ,3] [10 , 20, 30] // [(1,10),(2,20),(3,30)]

// functions like sum, reverse, isMember, take
// are hard to write using list comprehensions
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Warm-up exercises 2

Write a function or an expression for the following:
1. compute 5! factorial using foldr => 120
2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,
5], [6, 7]] => [1,2,3,4,5,6,7])
3. using map and foldr compute how many elements are
altogether in the following list [[1,2], [3, 4, 5], [6, 7]] => 7
4. using map extract only the first elements of the sublists in [[1,2],
[3, 4, 5], [6, 7]] => [1,3,6]
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Solutions 2

Write a function or an expression for the following:
1. compute 5! factorial using foldr => 120
2. rewrite flatten using foldr (for the following list [[1,2], [3, 4,
5], [6, 7]] => [1,2,3,4,5,6,7])
3. using map and foldr compute how many elements are
altogether in the following list [[1,2], [3, 4, 5], [6, 7]] => 7
4. using map extract only the first elements of the sublists in [[1,2],
[3, 4, 5], [6, 7]] => [1,3,6]

1. Start = foldr (*) 1 [1..5 ]
2. Start = foldr (++) [ ] [ [1 ,2 ] , [3 , 4 , 5] , [6 , 7] ]
3. Start = foldr (+) 0 (map length [ [1 ,2 ] , [3 , 4 , 5] , [6 , 7] ] )
4 Start = map hd [ [1 ,2 ] , [3 , 4 , 5] , [6 , 7] ]
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Sorting lists

Start = sort [3 ,1 ,4 ,2 ,0] // [0,1,2,3,4]

// inserting in already sorted list
Insert :: a [a ] → [a ] | Ord a
Insert e [ ] = [ e ]
Insert e [ x : xs ]
| e ≤ x = [ e , x : xs ]
| otherwise = [ x : Insert e xs ]
Start = Insert 5 [2 , 4 .. 10] // [2,4,5,6,8,10]

mysort :: [a ] → [a ] | Ord a
mysort [ ] = [ ]
mysort [a:x ] = Insert a (mysort x)
Start = mysort [3 ,1 ,4 ,2 ,0] // [0,1,2,3,4]

Insert 3 (Insert 1 (Insert 4 (Insert 2 (Insert 0 [ ] ))))
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Mergesort

merge :: [a ] [a ] → [a ] | Ord a
merge [ ] ys = ys
merge xs [ ] = xs
merge [ x : xs ] [ y : ys ]
| x ≤ y = [ x : merge xs [ y : ys ] ]
| otherwise = [ y : merge [ x : xs ] ys ]

Start = merge [2 ,5 ,7] [1 ,5 ,6 ,8] // [1,2,5,5,6,7,8]
Start = merge [ ] [1 ,2 ,3] // [1,2,3]
Start = merge [1 ,2 ,10] [ ] // [1,2,10]
Start = merge [2 ,1] [4 ,1] // [2,1,4,1]
Start = merge [1 ,2] [1 ,4] // [1,1,2,4]
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Mergesort 2

msort :: [a ] → [a ] | Ord a
msort xs
| len ≤ 1 = xs
| otherwise = merge (msort ys) (msort zs)
where

ys = take half xs
zs = drop half xs
half = len / 2
len = length xs

Start = msort [2 ,9 ,5 ,1 ,3 ,8] // [1,2,3,5,8,9]
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Quick sort

qsort :: [b] → [b] | Ord b
qsort [ ] = [ ]
qsort [a : xs ] = qsort [ x \\ x ← xs | x < a] ++ [a ] ++

qsort [ x \\ x ← xs | x >= a]

Start = qsort [2 ,1 ,5 ,3 ,6 ,9 ,0 ,1] // [0,1,1,2,3,5,6,9]
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Generating infinite list

// generating infinite list
Start = [2.. ] // [2,3,4,5,...]
Start = [1 ,3.. ] // [1,3,5,7,...]

fromn :: Int → [Int]
fromn n = [n : fromn (n+1) ]

Start = fromn 8 // [8,9,10,...]

// intermediate result is infinite
Start = map ((^)3) [1.. ]

// final result is finite
Start = takeWhile ((>) 1000) (map ((^)3) [1.. ] )
// [3,9,27,81,243,729]
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Infinite lists - repeat

// generating infinite list with repeat from StdEnv
repeat :: a → [a ]
repeat x = list where list = [x:list]

Start = repeat 5 // [5,5,5,...]

repeatn :: Int a → [a ]
repeatn n x = take n (repeat x)

Start = repeatn 5 8 // [8,8,8,8,8]
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Infinite lists - iterate

// generating infinite list with iterate from StdEnv
iterate :: (a→a) a → [a ]
iterate f x = [x: iterate f (f x)]

Start = iterate inc 5 // [5,6,7,8,9,...]

Start = iterate ((+) 1) 5 // [5,6,7,8,9,...]

Start = iterate ((*) 2) 1 // [1,2,4,8,16,...]

Start = iterate (λ x= x/10) 54321 // [54321,5432,543,54,5,0,0...]
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Prime numbers

divisible :: Int Int → Bool
divisible x n = x rem n == 0

denominators :: Int → [Int ]
denominators x = filter (divisible x) [1..x ]

prime :: Int → Bool
prime x = denominators x == [1 ,x ]

primes :: Int → [Int ]
primes x = filter prime [1..x ]

Start = primes 100 // [2,3,5,7,...,97]



Introduction Defining functions Lists Higher order functions Sorting Infinite lists Primes

Sieve

sieve :: [Int ] → [Int ]
sieve [p:xs] = [p: sieve [ i \\ i ← xs | i rem p ̸= 0] ]

Start = take 100 (sieve [2.. ] )
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Some more examples

qeq :: Real Real Real → (String , [Real ] )
qeq a b c
| a == 0.0 = ("not quadratic" , [ ] )
| delta < 0.0 = ("complex roots" , [ ] )
| delta == 0.0 = ("one root" , [¬b/(2.0*a) ])
| delta > 0.0 = ("two roots" , [ (¬b+radix)/(2.0*a) ,

(¬b-radix)/(2.0*a) ])
where

delta = b*b-4.0*a*c
radix = sqrt delta

Start = qeq 1.0 2.0 1.0

Start = qeq 1.0 5.0 7.0
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Warm-up exercises 3

Write a function for the following:
1. fibonnacci n
2. count the occurrences of a number in a list
3. write a list comprehension for the doubles of a list
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Solutions 3

fib :: Int → Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
Start = fib 5 // 8

fib2 :: Int → Int
fib2 n = fibAux n 1 1

fibAux 0 a b = a
fibAux i a b | i > 0 = fibAux (i-1) b (a+b)

Start = fib2 8
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Solutions 3

CountOccurrences :: a [a ] → Int | == a
CountOccurrences a [x : xs ] = f a [x : xs ] 0
where

f a [ ] i = i
f a [x : xs ] i
| a == x = f a xs i+1

= f a xs i

Start = CountOccurrences 2 [2 , 3 , 4 , 2 , 2 , 4 , 2 , 1] // 4

Start = [2*x \\ x ← [1..5 ] ] // [2, 4, 6, 8, 10]
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Conclusions

The goal was:
to give an introduction to functional programming
to present important data structures in fp
to get familiarized with basic and higher order functions
to practice by examples in order to acquire the programming
paradigm
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