
Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Introduction to Functional Programming

Zsók Viktória, Ph.D.

Department of Programming Languages and Compilers
Faculty of Informatics

Eötvös Loránd University
Budapest, Hungary

zsv@elte.hu

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Overview

1 Records

2 Arrays

3 Algebraic types - trees

4 Abstract Data Types

5 Bag as ADT

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Records

:: Person = { name :: String
, birthdate :: (Int,Int,Int)
, fpprogramer :: Bool
}

IsfpUser :: Person → String
IsfpUser {fpprogramer = True} = "Yes"
IsfpUser _ = "No"

Start = IsfpUser { name = "Me"
, birthdate = (1,1,1999)
, fpprogramer = True} // "Yes"

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Records

:: Person = { name :: String
, birthdate :: (Int,Int,Int)
, fpprogramer :: Bool
}

GetName :: Person → String
GetName p = p.name

GetName2 :: Person → String
GetName2 {name} = name

ChangeN :: Person String → Person
ChangeN p s = {p & name = s}

Start = ChangeN {name = "XY" , birthdate = (1 ,1 ,2000) ,
fpprogramer = True} "Alex"

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Records

:: Point = { x :: Real
, y :: Real
, visible :: Bool
}

:: Vector = { dx :: Real
, dy :: Real
}

Origo :: Point
Origo = { x = 0.0

, y = 0.0
, visible = True
}

Dist :: Vector
Dist = { dx = 1.0

, dy = 2.0
}

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Records

IsVisible :: Point → Bool
IsVisible {visible = True} = True
IsVisible _ = False

xcoordinate :: Point → Real
xcoordinate p = p.x

hide :: Point → Point
hide p = { p & visible = False }

Move :: Point Vector → Point
Move p v = { p & x = p.x + v.dx, y = p.y + v.dy }

Start = Move (hide Origo) Dist

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Records

:: Q = { nom :: Int
, den :: Int
}

QZero = { nom = 0, den = 1 }
QOne = { nom = 1, den = 1 }

simplify {nom=n,den=d}
| d == 0 = abort " denominator is 0"
| d < 0 = { nom = ¬n/g , den = ¬d/g}
| otherwise = { nom = n/g , den = d/g}
where g = gcdm n d

gcdm x y = gcdnat (abs x) (abs y)
where gcdnat x 0 = x

gcdnat x y = gcdnat y (x rem y)

mkQ n d = simplify { nom = n, den = d }
Start = mkQ 81 90

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Arrays

MyArray :: {Int}
MyArray = {1,3 ,5 ,7 ,9}

Start = MyArray.[2] // 5

MapArray1 f a = {f e \\ e ←: a}

Start :: {Int}
Start = MapArray1 inc MyArray

// Comprehension transformations:
Array = {elem \\ elem ← List}
List = [elem \\ elem ←: Array]

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Algebraic types

:: Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

:: Tree a = Node a (Tree a) (Tree a)
| Leaf

sizeT :: (Tree a) → Int
sizeT Leaf = 0
sizeT (Node x l r) = 1 + sizeT l + sizeT r

Start = sizeT (Node 4 (Node 2 (Node 1 Leaf Leaf)
(Node 3 Leaf Leaf)) Leaf) // 4

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Algebraic types

:: Tree a = Node a (Tree a) (Tree a)
| Leaf

atree = Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf)

depth :: (Tree a) → Int
depth Leaf = 0
depth (Node _ l r) = (max (depth l) (depth r)) + 1

Start = depth atree // 2

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Algebraic types

treesort :: ([a]→ [a]) | Eq , Ord a
treesort = collect o listtoTree

listtoTree :: [a] → Tree a | Ord, Eq a
listtoTree [] = Leaf
listtoTree [x:xs] = insertTree x (listtoTree xs)

insertTree :: a (Tree a) → Tree a | Ord a
insertTree e Leaf = Node e Leaf Leaf
insertTree e (Node x le ri)

| e≤x = Node x (insertTree e le) ri
| e>x = Node x le (insertTree e ri)

collect :: (Tree a) → [a]
collect Leaf = []
collect (Node x le ri) = collect le ++ [x] ++ collect ri

Start = treesort [3 , 1 , 5 , 9 , 2 , 7 , 0] // [0, 1, 2, 3, 5, 7, 9]

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Algebraic types

:: Tree a = Node a (Tree a) (Tree a)
| Leaf

atree = Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf)

:: Tree2 a = Node2 a (Tree2 a) (Tree2 a)
| Leaf2 a

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

More trees

nrNodes :: (Tree2 a) → Int
nrNodes (Leaf2 y) = 1
nrNodes (Node2 x l r) = 1 + nrNodes l + nrNodes r

aTree2 :: Tree2 Int

aTree2 = Node2 4 (Node2 2 (Node2 1 (Leaf2 1) (Leaf2 1))
(Node2 3 (Leaf2 3) (Leaf2 3))) (Leaf2 5)

Start = nrNodes aTree2 // 9

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

More trees

:: Tree3 a b = Node3 a (Tree3 a b) (Tree3 a b)
| Leaf3 b

aTree3 :: Tree3 Int Real

aTree3 = Node3 2 (Node3 1 (Leaf3 1.1) (Leaf3 2.5))
(Node3 3 (Leaf3 3.0) (Leaf3 6.9))

sumLeaves :: (Tree3 Int Real) → Real
sumLeaves (Leaf3 y) = y
sumLeaves (Node3 x le ri) = sumLeaves le + sumLeaves ri

Start = sumLeaves aTree3 // 13.5

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Algebraic types

// Triple branches
:: Tree4 a = Node4 a (Tree4 a) (Tree4 a) (Tree4 a)

| Leaf4

// Rose-tree - tree with variable multiple branches
// No leaf constructor, node with no branches
:: Tree5 a = Node5 a [Tree5 a]

// Every node has one branch = list
:: Tree6 a = Node6 a (Tree6 a)

| Leaf6

// Tree with different types
:: Tree7 a b = Node7a Int (Tree7 a b) (Tree7 a b)

| Node7b b (Tree7 a b)
| Leaf7a b
| Leaf7b Int

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Map, foldr on trees

:: BTree a = Bin (BTree a) (BTree a)
| Tip a

mapbtree :: (a → b) (BTree a) → BTree b
mapbtree f (Tip x) = Tip (f x)
mapbtree f (Bin t1 t2) = Bin (mapbtree f t1) (mapbtree f t2)

foldbtree :: (a a → a) (BTree a) → a
foldbtree f (Tip x) = x
foldbtree f (Bin t1 t2) = f (foldbtree f t1) (foldbtree f t2)

aBTree = Bin (Bin (Bin (Tip 1) (Tip 1))
(Bin (Tip 3) (Tip 3))) (Tip 5)

Start = mapbtree inc aBTree
Start = foldbtree (+) aBTree // 13

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Abstract Data Types

definition module Stack

:: Stack a

newStack :: (Stack a) // Creates empty stack
empty :: (Stack a) → Bool // Checks if a stack is empty
push :: a (Stack a) → Stack a // push new element on top of
the stack
pop :: (Stack a) → Stack a // Remove the top element from
the stack
top :: (Stack a) → a // Return the top element from
the stack

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Abstract Data Types

implementation module Stack
import StdEnv
:: Stack a :==[a]

newStack :: Stack a
newStack = []

empty :: (Stack a) → Bool
empty [] = True
empty x = False

push :: a (Stack a) → Stack a
push e s = [e : s]
pop :: (Stack a) → Stack a
pop [e : s] = s
top :: (Stack a) → a
top [e : s] = e

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Bag

definition module Bag
import StdEnv

:: Bag a

newB :: (Bag a) // empty bag
isempty :: (Bag a) → Bool
insertB :: a (Bag a) → Bag a | Eq a // insert an element
removeB :: a (Bag a) → Bag a | Eq a // remove an element
sizeB :: (Bag a) → Int // return all nr elements

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Bag

implementation module Bag
import StdEnv

:: Bag a :==[(Int, a)]

newB :: Bag a
newB = []

isempty :: (Bag a) → Bool
isempty [] = True
isempty x = False

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Bag

insertB :: a (Bag a) → Bag a | Eq a
insertB e [] = [(1 ,e)]
insertB e [(m , x):t]
| e == x = [(m+1, x):t]
= [(m , x)] ++ insertB e t

removeB :: a (Bag a) → Bag a | Eq a
removeB e [] = []
removeB e [(m , x):t]
| e == x && (m-1) == 0 = t
| e == x = [(m-1, x):t]
= [(m , x)] ++ removeB e t

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Bag

sizeB :: (Bag a) → Int
sizeB [] = 0
sizeB [(m , x):t] = m + sizeB t

// tests of implementations:
Start = ("s0 = newB = " , s0 ,’λn’

, "s1 = insertB 1 s0 = " ,s1 ,’λn’
, "s2 = insertB 1 s1 = " ,s2 ,’λn’
, "s3 = insertB 2 s2 = " ,s3 ,’λn’
, "s4 = removeB 1 s3 = " ,s4 ,’λn’
, "s5 = sizeB s3 = " ,s5 ,’λn’
, "test = isempty s3 = " ,test,’λn’)

Records Arrays Algebraic types - trees Abstract Data Types Bag as ADT

Bag

where
s0 = newB
s1 = insertB 1 s0
s2 = insertB 1 s1
s3 = insertB 2 s2
s4 = removeB 1 s3
s5 = sizeB s3
test = isempty s3

/∗ ("s0 = newB = " , [] , ’
’ ,"s1 = insertB 1 s0 = " ,[(1 ,1)] , ’
’ ,"s2 = insertB 1 s1 = " ,[(2 ,1)] , ’
’ ,"s3 = insertB 2 s2 = " ,[(2 ,1) ,(1 ,2)] , ’
’ ,"s4 = removeB 1 s3 = " ,[(1 ,1) ,(1 ,2)] , ’
’ ,"s5 = sizeB s3 = " ,3 , ’
’ ," test = isempty s3 = ",False , ’
’) ∗/

	Records
	Arrays
	Algebraic types - trees
	Abstract Data Types
	Bag as ADT

